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ABSTRACT Following the discovery of the “Taung
Child” (Australopithecus africanus) in 1924 in the Bux-
ton-Norlim Limeworks near Taung, the fossil-bearing
deposits associated with the Dart and Hrdlička pin-
nacles have been interpreted as the mined remnants of
cave sediments that formed within the Plio–Pleistocene
Thabaseek Tufa: either as a younger cave-fill or as con-
temporaneous carapace caves. When combined with the
Plio–Pleistocene dolomitic cave deposits from the “Cradle
of Humankind,” a rather restricted view emerges that
South African early hominins derived from cave depos-
its, whereas those of east and central Africa are derived
from fluvio-lacustrine and paleosol deposits. We under-
took a sedimentological and paleomagnetic analysis of
the pink-colored deposit (PCS) from which the “Taung
Child” is purported to have derived and demonstrate
that it is a calcrete, a carbonate-rich pedogenic sedi-
ment, which formed on the paleo-land surface. The

deposit extends 100 s of meters laterally beyond the
Dart and Hrdlička Pinnacles where it is interbedded
with the Thabaseek Tufa, indicating multiple episodes of
calcrete development and tufa growth. The presence of
in situ rhizoconcretions and insect trace fossils (Celli-
forma sp. and Coprinisphaera sp.) and the distinctive
carbonate microfabric confirm that the pink deposit is a
pedogenic calcrete, not a calcified cave sediment. Paleo-
magnetic and stratigraphic evidence indicates that a sec-
ond, reversed polarity, fossil-bearing deposit (YRSS) is a
younger fissure-fill formed within a solutional cavity of
the normal polarity tufa and pink calcrete (PCS). These
observations have implications for the dating, environ-
ment, and taphonomy of the site, and increase the likeli-
hood of future fossil discoveries within the Buxton-
Norlim Limeworks. Am J Phys Anthropol 151:316–324,
2013. VC 2013 Wiley Periodicals, Inc.

The surficial deposits of the Kalahari basin are char-
acterized by the sandstones, calcretes, ferricretes, and
pan sediments of the Kalahari Group, which are home
to some of the thickest and most extensive calcrete
deposits in the world (Goudie, 1973; Watts, 1980). Kala-
hari Group sediments (Fig. 1a) can be in excess of 100 m
thick (Netterberg, 1980); however, poor exposure and
poor dating has hampered the development of a regional
lithostratigraphy (Haddon, 2000). Calcretes occur at
numerous stratigraphic levels throughout the Kalahari
Group and are often found interbedded with fluvial and/
or pan deposits (Thomas and Shaw, 1991). At the south-
east margin of the Kalahari, in the North West Province
of South Africa, the dolomitic Ghaap Plateau forms an
east–west trending escarpment at the boundary with
quartzites and slates of the Precambrian Transvaal
Supergroup. Groundwater exits the dolomite in a series
of springs along the Ghaap escarpment, forming complex
sequences of tufa deposits including waterfall tufas and
carapaces that accumulate over the underlying bedrock
and surficial deposits (Butzer et al., 1978) which often
contain fossils (Peabody, 1954; Curnoe et al., 2005). Such
deposits include the Buxton-Norlim Limeworks, which is
located on the northeast escarpment edge of the Ghaap

Plateau, 15 km SW of Taung (Fig. 1a), and exposes an
extensive sequence of tufa deposits extending from the
late Pliocene to the Holocene. This limeworks (often only
referred to as “Taung” or “Taungs” in early literature)
was the location of the first hominin fossil found in
South Africa in 1924, the “Taung Child” Australopithe-
cus africanus (Dart, 1925), as well as numerous other
fossil and archaeological deposits potentially dating from
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the Pliocene to the Holocene (Peabody, 1954; McKee,
1994).

The limeworks commenced its quarrying operations in
1916 and by 1919 the blasting had unearthed a number
of fossil-bearing deposits (Wybergh, 1920; Haughton,
1925; McKee, 1994). On the instruction of the director of
the quarry company, two pinnacles were left in place on
either side of the fossil deposit and slightly to the north
of the suspected discovery site (Peabody, 1954; Partridge,
2000; Fig. 1b). The western pinnacle is known as the
“Dart Pinnacle” (Tobias et al., 1993) and has been previ-
ously referred to as the “Australopithecus Pinnacle” by
some authors (Partridge et al., 1991; Partridge, 2000).
The more eastern pinnacle is named after Ale�s Hrdlička
who visited the site soon after the “Taung Child” discov-
ery in 1925 and who attempted to excavate baboon fos-
sils from this pinnacle although only one more complete
specimen was removed Hrdlička (1925). Subsequently,
Young (1925), Cipriani (1928), Broom (1934), and Pea-
body (1954) all made a number of trips to the Taung fos-
sil sites, collecting sporadically from a number of
deposits, as have later authors (McKee, 1994). All agreed
that the exact provenience of the A. africanus specimen
had been lost during mining activities.

Further excavations into the Hrdlička Pinnacle by the
University of the Witwatersrand (under the direction of
Philip Tobias) as well as at the base of the Dart Pinnacle
took place in 1988 by Toussaint and McKee and by
McKee from 1989 to 1993 (McKee and Tobias, 1990,
1994). Excavations and examination of bore cores by

Partridge (Partridge et al., 1991; Tobias et al., 1993) indi-
cated that two lithologies occur across the Dart and
Hrdlička Pinnacles. Tobias et al. (1993) described the first
lithology as a pale reddish brown to pink clay and silt-
stone (PCS aka “Pink Fill”) and the second as a yellow-
ish-red sand and siltstone (YRSS aka “Red Fill”). One of
the key findings of this study was that the PCS deposits
at the base of the Dart Pinnacle were sedimentologically
similar to the matrix of the “Taung Child” and contained
similar fossil eggshell and crab remains (Partridge et al.,
1991; Tobias et al., 1993). This work demonstrated that
the PCS deposits were surviving remnants of the deposit
from which the “Taung Child” was recovered (McKee,
1993a,b, 1994; McKee and Tobias, 1994).

Since the discovery of the “Taung Child” in 1924 (Dart,
1925) and the initial sedimentological study of Young
(1925), the deposits associated with the Dart and
Hrdlička pinnacles have been interpreted as cave sedi-
ments that formed within the Plio–Pleistocene Thabaseek
Tufa: either as a younger cave-fill or as contemporaneous
carapace caves (Peabody, 1954; Butzer, 1974; McKee,
1993a,b; McKee and Tobias, 1994; McKee, 2010). When
combined with the Plio–Pleistocene dolomitic cave depos-
its from the “Cradle of Humankind” (Gauteng Province)
and Makapansgat Caves (Limpopo Province; Herries
et al., 2010; Fig. 1a), a rather restricted pattern of deposi-
tional environments and taphonomy emerges that South
African early hominins are derived from cave deposits,
whereas those of east and central African are derived
from fluvio-lacustrine deposits.

Fig. 1. (a) Location of the Buxton-Norlim Limeworks (Taung) in relation to other cave and land surface hominin localities in
South Africa. The thickness and extent of the Tertiary Kalahari Group sediments are indicated (from Thomas and Shaw, 1991). (b)
The location of outcrops (dotted lines) and sampling localities around the Dart and Hrdlička Pinnacles, Buxton-Norlim Limeworks
(after McKee et al., 1995). (c) Sedimentological log and magnetostratigraphy at the base of the Dart Pinnacle (excavation locality,
D-A).
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METHODS

Utilizing the previous exposures produced by the Uni-
versity of the Witwatersrand excavations (1988–1993)
(McKee and Tobias, 1994; Fig. 1b) and newly identified
exposures, we have undertaken an initial sedimentologi-
cal and paleomagnetic analysis to further our under-
standing of the depositional context of the “Taung Child”
and associated fauna from the Buxton-Norlim Lime-
works. Geological samples were taken from the sedi-
ments outcropping at the base of the Dart Pinnacle, the
Hrdlička Pinnacle, and in the intervening area (Fig. 1b).
The trench at the base of the Dart Pinnacle is 2.5 m
deep and offers the potential for sampling vertically
within the sedimentary sequence (Fig. 1c), whereas the
Hrdlička Pinnacle exposes approximately 10 m of the
stratigraphy although some is still obscured by mine
waste. A series of samples were collected laterally, both
east–west and north–south across the exposed area of
the mined tufa. The near vertical dip of the Thabaseek
Tufa in this area meant that more than 20 m strati-
graphic thickness of tufa was exposed. Samples were
also collected from two new localities, 60 m west of the
Dart Pinnacle (Western outcrop) and �300 m north–
northeast of the Hrdlička Pinnacle (what we now refer
to as the “Peabody Pinnacle”; Fig. 2). Routine sedimento-
logical observations were undertaken on hand speci-
mens, polished blocks, and thin sections. Paleomagnetic
analysis followed the procedures outlined by Herries and
Shaw (2011) and Herries et al. (2006).

RESULTS

The Thabaseek Tufa is a white highly porous micro-
bally mediated carbonate which is well bedded, display-
ing either steeply dipping beds or horizontal beds with
occasional domal structures. The Thabaseek Tufa is a
phytohermal and stromatolitic tufa, which formed in riv-
erine and lacustrine environments (following Pedley,
2009); steeply dipping beds of tufa or “carapaces”
(McKee, 1993b) are suggestive of tufa precipitation over
a waterfall. The PCS is a massive pink unit, largely
devoid of bedding, and composed principally of micrite (a
matrix of microcrystalline calcite), with a small propor-
tion of sparry calcite cement and silt-sized quartz grains.
Lithic clasts are rare in the PCS, although angular
clasts of Precambrian bedrock and Thabaseek Tufa occur
in discrete brecciated layers, either at the base of the
unit or where the unit interbeds with the Thabaseek
Tufa. The PCS deposits also outcrop in two newly stud-
ied sections to the west and east of the pinnacles,
extending at least 400 m in a northeasterly direction
(Fig. 2), indicating that they are not restricted to the
Dart and Hrdlička Pinnacles. The “Western Outcrop” is
located 70 m SW of the Dart Pinnacle and is character-
ized by PCS deposits unconformably overlying the Pre-
cambrian shale and underlying the Thabaseek Tufa. At
the Peabody Pinnacle, the PCS deposits are interbedded
with the Thabaseek tufa (Fig. 3), indicating a cyclic

Fig. 2. Satellite Image of the Buxton-Norlim Limeworks
near Taung (courtesy of Google EarthTM), showing the outcrop
localities of the Pink Calcrete (PCS). D, Dart Pinnacle; H,
Hrdlička Pinnacle; W, Western Outcrop; P, Peabody Pinnacle.
[Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

Fig. 3. Photograph of interbedded Thabaseek Tufa and Pink
Calcrete (PCS) from the Peabody Pinnacle, a newly described
outcrop located to the north–northeast of the Dart and Hrdlička
Pinnacles (Fig. 2). Photograph faces east. [Color figure can be
viewed in the online issue, which is available at wileyonline
library.com.]
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deposition of the two lithological units rather than the
sediment fill of a cave within the tufa, as suggested by
the authors of the previously published literature (Par-
tridge, 2000; McKee, 2010).

The PCS deposits display a number of sedimentologi-
cal characteristics typical of massive calcretes (Fig.
4a,b). Rhizoconcretions (Fig. 4c), root mats (Fig. 4b,d),
and trace fossils belonging to the Coprinisphaera

ichnofacies, Celliforma sp. (Fig. 4g), and Coprinisphaera
sp. (Fig. 4h), are all indicative of paleosol development.
Holes between 1 and 3 mm in the rhizoconcretions and
root mats indicate the position of the roots prior to decay.
In thin section, the calcified root mats resemble the alveo-
lar septal fabric of root growth within the soil (Fig. 4f).
Much of the PCS deposits are composed of peloidal
micrite (Fig. 4a) cemented by at least one phase of car-
bonate cement. The PCS contains silt-sized quartz grains
“floating” within the micrite matrix (Fig. 4e), as it is typi-
cal of the expansive growth of calcretes (Watts, 1978).

The YRSS is a brown-red nodular and laminated car-
bonate deposit outcropping at the top and on the south
face of the Hrdlička Pinnacle and 350 m to the north–
northeast at the top of the Peabody outcrop. Like the
PCS, it has a micritic matrix with floating grains of silt-
sized quartz, suggesting a pedogenic origin. Unlike the
PCS, however, the YRSS is well bedded and in places is
seen filling karstic fissures formed within the Thabaseek
Tufa, such as that exposed on the south side of the
Hrdlička Pinnacle. Karstic processes have exploited
weaknesses within the Thabaseek Tufa, often following
steeply dipping bedding planes, and replaced the tufa
with the younger soil-derived material, in a manner typ-
ical of subtropical karstic weathering (Laverty, 2012).

Mineral magnetic measurements and demagnetization
spectra indicate that magnetite is the dominant carrier
in the deposits owing to detrital inputs (Herries and
Shaw, 2011). Samples record weak, but extremely stable
remanence, in contrast to the previous paleomagnetic
analysis of cored samples from the site which did not
produce consistent results (Partridge et al., 2000). Her-
ries and Shaw (2011) have noted similar problems with
paleomagnetic analysis of drilled cores from Sterkfon-
tein. In contrast to the earlier study at Taung, both
reversed and normal polarity directions are recorded
from the site (Fig. 5). Across the Dart and Hrdlička
Pinnacles, all of the Thabaseek Tufa samples analyzed
record normal polarity directions. The underlying PCS
samples record normal polarity directions at the base of
the exposure and reversed polarity directions toward the
top of the exposure (Fig. 1c). In contrast, the YRSS
deposits record reversed polarities. This preliminary
paleomagnetic evidence indicates that the PCS and
YRSS fossil deposits are not of the same age. Combining
the stratigraphic and paleomagnetic evidence, it is clear

Fig. 4. Pedogenic features of the PCS deposits from the
Dart and Hrdlička Pinnacles. (a) Polished block of PCS from
the base of the Dart Pinnacle. Massive pink calcrete with typi-
cal mottled appearance. (b) Polished block of PCS from the base
of the Dart Pinnacle with calcified root-mat. Note the 1-mm di-
ameter root holes (h) surrounded by concentric calcite growth.
(c) Rhizoconcretion in PCS from the base of the Dart Pinnacle.
Note the root holes in the center of the concretion. (d) Calcified
root mats in PCS deposits, Hrdlička Pinnacle. Chizel length is
25 cm. (e) Thin section of (a) showing micritic peloids (pel) and
floating silt-sized quartz grains (q) surrounded by an isopachous
rim cement and a drusy spar cement; p.p.l., 5 mm field of view.
(f) Thin section of the cream-colored root mats shown in (d).
Note sparite in-fill of root casts surrounded by fibrous calcite,
as observed in other Kalahari calcretes (Watts, 1978, 1980);
p.p.l., 5 mm field of view. (g) Five solitary bee cells belonging to
the Celliforma ichnogenus; PCS deposit, base of the Dart Pinna-
cle. (h) Dung beetle brood ball belonging to the Coprinisphaera
ichnogenus; PCS deposit, base of the Dart Pinnacle. Note the
small size of this specimen.
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that the “Taung Child”-bearing PCS deposit is older
than the nonhuman primate rich YRSS fissure deposits
that infill solution tubes formed through the interbedded
Thabaseek tufa and PCS.

Pedogenic origin of the PCS “Pink carbonate”

The sediments of the Dart and Hrdlička Pinnacles
have proven difficult to interpret since mining first
exposed them in 1924. Much of the Buxton-Norlim
quarry was blanketed by up to 1 m of lime kiln dust
that covered (or obscured) the underlying deposits. In
addition, the Thabaseek Tufa exposed on the southern
face of the Dart Pinnacle has been subjected to

numerous episodes of karstic erosion and sedimentation
since its initial deposition, obscuring much of the origi-
nal deposit. Given the presence of younger cave deposits
at the Buxton-Norlim Limeworks and the discovery of
hominin-bearing paleokarst at Sterkfontein in the 1930s,
it is of little surprise that the “Pink Carbonate” of the
Dart and Hrdlička Pinnacles was assigned a speleoge-
netic origin (Fig. 6a,b). Moreover, much of the early
work concentrated on the Hrdlička Pinnacle, where
bone-bearing cave fissure fills do occur. Exposure of the
PCS deposits was greatly improved during the Univer-
sity of the Witwatersrand excavations (McKee, 1994)
which cleared parts of the pinnacles of miners rubble,
exposed the quarry floor between the two pinnacles, and

Fig. 5. Paleomagnetic vector plots for normal polarity PCS and Thabaseek Tufa and reversed polarity YRSS samples collected
from the Dart and Hrdlička Pinnacles using both thermal and alternating field (AF) demagnetization.
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excavated a >2 m deep pit at the base of the Dart
Pinnacle and some smaller trenches in the Hrdlička
Pinnacle. However, subsequent authors (Partridge, 2000;
McKee, 2010) continued to uphold the tufa cave hypothe-
sis despite the lack of clear evidence for the subterra-
nean nature of the PCS deposit.

The outcrops of PCS are characterized by rhizoconcre-
tions, Coprinisphaera sp., Celliforma sp., and fragments
of fossil eggshell (Figs. 1c and 4). This association of
plant and animal trace fossils is characteristic of the
Coprinisphaera ichnofacies and represents calcrete

growth in a semi-arid environment. Coprinisphaera and
Celliforma are nesting traces (calichnia) constructed in
the soil by adult insects (dung beetles and solitary bees,
respectively) for breeding purposes (Genise et al., 2000).
The larvae are confined to cells provisioned with differ-
ent kinds of organic matter, such as pollen, dung, and
plant material. Unlike some social insects (e.g., ants and
termites), most solitary insects cannot transport their
eggs or larvae to more favorable sites when conditions
become unfavorable, nor they can construct nests to pro-
duce a favorable microclimate. Instead, they construct
their nests at ideal sites where larval physiological
requirements match the local soil microenvironment
(Genise et al., 2000). Excessive moisture inside the cells
leads to the decay of provisions, whereas insufficient
moisture results in dehydration of the larvae, which are
not protected by a water-resistant cuticle like adults.
The Celliforma tracemaker, solitary bees (Hymenoptera),
construct their nests on bare, light, and dry soil exposed
to sun with access to angiosperms which provide pollen
for the bees.

The Coprinisphaera ichnogenus is strongly associated
with terrestrial herbaceous communities such as savan-
nahs, grasslands, and prairies (S�anchez et al., 2010). As
the Coprinisphaera tracemaker, Scarabaeinae, provision
their nests with the excrement of vertebrate herbivores,
it is common to find their trace fossils in association
with herbaceous trace fossils such as rhizoliths (Genise
et al., 2000). The Coprinisphaera ichnofacies has been
observed at a number of African early hominin paleosol
localities in Tanzania, Kenya, and Chad (Thackray,
1994; Duringer et al., 2007; Krell and Schawaller, 2011)
and is indicative of savannah grassland environments.

Toward the top of the PCS, particularly in the
Hrdlička Pinnacle, calcified root mats form discontinu-
ous cream-colored sheets up to 10 cm thick (Fig. 4d),
punctuated by 1 mm diameter holes, which housed the
roots prior to their decay. In thin section, the highly con-
torted spar-filled cylindrical structures and microlami-
nar micrite fabric (Fig. 4f) is typical of the biogenic
laminar calcretes described by Wright et al. (1988). Simi-
lar sedimentary structures have been described and fig-
ured in the early Pleistocene Koobi Fora Formation,
Kenya (Cohen, 1982; Mount and Cohen, 1984). In arid
environments, water availability is a dominant factor in
root morphology. Plants growing near ephemeral
streams or on floodplains send out long vertical taproots
to exploit deeper phreatic water. In contrast, plants liv-
ing in areas where phreatic water is shallow, such as
pan margins, are able to extend their roots laterally in
thin mats over large areas. The laminar calcretes
exposed in the Hrdlička Pinnacle are indicative of the
lateral root growth that typically forms in seasonally
waterlogged palustrine and floodplain environments
(Wright et al., 1995, 1988).

It is possible that this represents the migration of the
paleo-river channel close to this locality, prior to the
inundation of the area with the Thabaseek riverine tufa
deposits. Based on the preliminary evidence collected
from the environs surrounding the Dart and Hrdlička
Pinnacles, the sedimentary sequence is characterized by
>1 m thick beds of interbedded calcrete and tufa (Fig.
3), indicative of a semi-arid land surface that was
repeatedly inundated by a tufa-forming river and associ-
ated freshwater lakes that periodically dried out, revert-
ing to calcrete development. Further sedimentological
work is required to determine the location of the paleo-

Fig. 6. (a) North-facing photograph of the area surrounding
the Dart and Hrdlička Pinnacles. The spot identified as the
location of the “Taung Child” by Peabody (1954) is indicated by
the pyramid to the east of the Dart Pinnacle. Field of view is 55
m wide. (b) An illustration of the tufa cave model of the strati-
graphic relationships at the Dart and Hrdlička Pinnacles.
Modified from Peabody (1954). (c) A reinterpretation of the
stratigraphic relationships at the Dart and Hrdlička Pinnacles
in light of the lithological and stratigraphic evidence presented
in this study.
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Thabaseek river channel and its proximity to the cal-
crete deposits, and geological mapping is required to
determine the full lateral extent of the pink calcrete
(PCS).

Implications for the relative age of the fossil
deposits at Taung

A faunal age estimate of 2.8–2.3 Ma has been pro-
duced for the primate assemblage of the Hrdlička Pinna-
cle, based on a combination of fossils collected from the
YRSS and the PCS (Delson, 1988; McKee, 1993a). How-
ever, there has been uncertainty as to whether the
YRSS is contemporaneous with (Partridge et al., 1991)
or younger than (McKee, 1993a) the hominin-bearing
PCS deposit, with implications for the age of the “Taung
Child” relative to the faunal age estimate. In addition,
reclassification of the taxonomy of some of the primate
specimens (Gilbert, 2007; Williams et al., 2007) and
changes in the age of other sites on which the biochro-
nology was based (Herries et al., 2010), has reduced the
reliability of the existing age estimate.

The paleomagnetic data shown in Figure 5 show that
the YRSS deposits have a reversed polarity, whereas the
PCS and Thabaseek Tufa have a predominantly normal
polarity, indicating that the fossil assemblages of the
YRSS and PCS are not contemporaneous. In conjunction
with the stratigraphic evidence for the crosscutting rela-
tionship between the YRSS and the interbedded PCS
and Thabaseek Tufa sequence (Fig. 6c), it is clear that
the hominin-bearing PCS deposit is older than the pri-
mate-bearing YRSS fissure-fill. This indicates that the
faunal age estimate of 2.8–2.3 Ma (McKee, 1993a) is
most likely a minimum age estimate for the “Taung
Child.”

Additional dating evidence is required to further con-
strain the age of the normal polarity PCS deposit and by
inference the age of the “Taung Child,” through correla-
tion to the Global Polarity TimeScale (GPTS). We are in
the process of collecting further dating evidence through
uranium–lead dating of carbonate material (Pickering
and Kramers, 2010), more detailed paleomagnetic stud-
ies, and an improved understanding of the stratigraphy
of the site.

CONCLUSIONS AND FUTURE RESEARCH

The evidence presented in this study demonstrates
that the pink hominin-bearing deposits of the Dart and
Hrdlička Pinnacles were not sedimentary infills of a tufa
cave. Instead, we have demonstrated that the hominin-
bearing pink carbonate deposit is a calcrete that formed
on the Plio–Pleistocene land surface. This appears to be
the earliest hominin-bearing land surface deposit to be
recognized from southern Africa; hominin fossils from
the Elandsfontein calcrete and dune system and the Cor-
nelia fluvial system date to <1.1 Ma (Herries and Shaw,
2011; Brink et al., 2012). We have demonstrated that the
pink deposits share a number of sedimentological char-
acteristics with the hominin-bearing paleosols of eastern
and central Africa (Hay and Reeder, 1978; Cohen, 1982).

The low abundance of vertebrate fossils within the
PCS deposit of the Dart Pinnacle, especially when com-
pared with the primate-rich deposits of the Hrdlička
Pinnacle, is highly suggestive of differing taphonomic
processes. The low rate and low-abundance passive accu-
mulation of bones on a land surface contrasts greatly
with a rapid and high-abundance predatory

accumulation or a primate sleeping site, the two most
likely scenarios of bone accumulation within the YRSS
of the Hrdlička Pinnacle (Simons, 1966; Brain, 1981;
McGrew et al., 2003; Barrett et al., 2004). Berger and
Clarke (1995) introduced the Bird of Prey Hypothesis to
explain the unusual elemental composition and bone
modification characteristics of the “Taung Child” cra-
nium and numerous other primate fossils from the asso-
ciated PCS deposits. Raptor-modified bones will either
enter the sedimentary record at the kill site or will be
transported to the nest. As some large raptors preferen-
tially select nesting platforms on sheer cliff faces above
either a seasonal or permanent water source (Brain,
1981; Steyn, 1982; Ginn et al., 1989; Gargett, 1990;
Berger and Clarke, 1995), bone debris dropped from the
nest can accumulate on the land surface below, or be
transported downstream before accumulation in a lag or
flood deposit (Brain, 1981; Berger and Clarke, 1995;
McKee, 2010). Although the evidence for raptor modifi-
cation of the land surface PCS fossil assemblage is com-
pelling, the full taphonomic history of the bone
accumulation is currently uncertain.

Under the previous tufa cave depositional model (Fig.
6b), it seemed unlikely that there were significant in
situ Plio–Pleistocene fossil deposits remaining to be dis-
covered at the Dart and Hrdlička Pinnacles, as they had
been largely destroyed by the combination of mining
activities and paleontological investigations. To the con-
trary, we have shown that the pink calcrete extends 100
s of meters laterally beyond the Dart and Hrdlička Pin-
nacles (Figs. 2 and 3). This observation is at odds with a
cave formation model for the earliest hominin-bearing
deposits, and instead reflects an extensive calcretized
land surface in the vicinity of a carbonate-rich river sys-
tem. Despite the apparent low-fossil abundance, with
such a large area of exposure, the likelihood of finding
further primate fossils from the PCS deposit at Taung is
high.
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