Assessing the paleoenvironmental potential of Pliocene to Holocene tufa deposits along the Ghaap Plateau escarpment (South Africa) using stable isotopes

Taylor Louise Doran a,b,*, Andy I.R. Herries c,d, Philip J. Hopley a,b, Hank Sombroek a, John Hellstrom e, Ed Hodge f, Brian F. Kuhn g

a Department of Earth and Planetary Sciences, Birkbeck, University of London, London WC1E 7HX, UK
b Department of Earth Sciences, University College London, London WC1E 6BT, UK
c The Australian Archaeomagnetism Laboratory, Department of Archaeology and History, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
d Centre for Anthropological Research, University of Johannesburg, Gauteng, South Africa
e School of Earth Sciences, University of Melbourne, Victoria 3010, Australia
f Formerly Institute of Environmental Research, ANSTO, PMB1 Menai, NSW 2234, Australia
g Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa

ARTICLE INFO

Article history:
Received 11 August 2014
Available online 29 May 2015

Keywords:
Tufa
Stable isotope analysis
Radiocarbon dating
Uranium-series dating
Taung
Paleomagnetism

ABSTRACT

The tufa deposits of the Ghaap Plateau escarpment provide a rich, yet minimally explored, geological archive of climate and environmental history coincident with hominin evolution in South Africa. This study examines the sedimentary and geochemical records of ancient and modern tufas from Buxton–Norlim Limeworks, Groot Kloof, and Gorrokop, to assess the potential of these sediments for providing reliable chronologies of high-resolution, paleoenvironmental information. Chronometric dating demonstrates that tufa formation has occurred from at least the terminal Pliocene through to the modern day. The stable isotope records show a trend toward higher, more variable δ18O and δ13C values with decreasing age from the end of the Pliocene onwards. The long-term increase in δ18O values corresponds to increasingly arid conditions, while increasing δ13C values reflect the changing proportion of C3/C4 vegetation in the local environment. Analysis of the Thabaseek Tufa, in particular, provides valuable evidence for reconstructing the depositional and chronological context of the enigmatic Taung Child (Australopithecus africanus). Collectively, the results of the present study demonstrate the potential of these deposits for developing high-precision records of climate change and, ultimately, for understanding the causal processes relating climate and hominin evolution.

© 2015 University of Washington. Published by Elsevier Inc. All rights reserved.

Introduction

At the south-eastern margin of the Kalahari Desert in the North West Province of South Africa, the dolomitic Ghaap Plateau forms a prominent east–west trending escarpment at the boundary with the quartzites and slates of the Precambrian Transvaal Supergroup (Altermann and Wotherspoon, 1995) (Fig. 1a). The 275 km long escarpment possesses 70–120 m high cliffs from which springs have emerged during the Cainozoic; groundwater exiting the dolomite via these karst springs has deposited layers of tufaceous carbonates that have accumulated as extensive formations over the underlying bedrock and surface deposits (Butzer et al., 1978), which often contain fossils (Peabody, 1954; Curnoe et al., 2005).

In addition to the type specimen of Australopithecus africanus (Dart, 1925), an array of vertebrate, fossil material has been recovered from deposits associated with the Ghaap Plateau escarpment tufa formations. These fossiliferous deposits occur in many forms ranging from breccia fillings of small gullies incised into larger formations by karst depositing waterfalls; river-carved rockshelters along the valley walls; vadose caves formed entirely within the tufa; and tufaceous cappings of synchrinous forming land surfaces (Humphreys and Thackeray, 1983; Klein et al., 1991; Curnoe et al., 2006; Hopley et al., 2013). Similar to the freshwater carbonate sequences recently described from early hominin localities in the East African Rift Valley (e.g. Johnson et al., 2009; Ashley et al., 2010), the terrestrial carbonates of the Ghaap Plateau escarpment are associated with a long, rich history of hominin occupation in southern Africa from at least the late Pliocene onwards (Humphreys and Thackeray, 1983; Beaumont and Morris, 1990; Beaumont and Vogel, 2006; Hopley et al., 2013).

Not only do the Ghaap tufa deposits preserve a wealth of paleoanthropological and paleolithic materials, these calcareous sediments provide contextual evidence by recording details of landscape evolution. Tufas are terrestrial carbonates formed in freshwater environments
under the influence of ambient temperature, alkaline-groundwater discharge through a combination of physicochemical and biologically mediated processes (Pedley, 1990; Ford and Pedley, 1996). Particularly in the semi-arid environment of the Ghaap Plateau, the occurrence of large tufa accumulations is indicative of past humid phases when accelerated groundwater recharge sufficiently enhanced spring flow to permit carbonate formation (Pedley, 1990). As such, tufa deposits comprise important geologic records of past pluvial phases (Nicolli et al., 1999; Viles et al., 2007; Arenas et al., 2014) and may serve as proxy records of hydrological regimes to complement other local proxy records of paleoclimate (e.g., Garnett et al., 2004; Cremašchi et al., 2010; Domínguez-Villar et al., 2011). Previous research on the tufa formations at the sites of Buxton-Norlim, Gorrokop, and Groot Kloof along Ghaap escarpment (Fig. 1a) identified six major geomorphological phases interpreted as representing changing climatic conditions (Butzer, 1974; Butzer et al., 1978). While this initial research provided the first long-term record of moisture and temperature changes in the region (Butzer et al., 1978), the capacity of the Ghaap tufa deposits to further provide high-resolution information about the climatic factors controlling hydrological processes through geochemical and geochronological analyses remains largely unexplored.

To assess the chronometric and paleoenvironmental value of the Ghaap Plateau escarpment tufas, we examined modern and ancient deposits from three localities, the Buxton-Norlim Lineworks near Taung, and Groot Kloof and Gorrokop, containing Malony’s Kloof, near Ulco (Fig. 1a). Tufa deposits were dated using radiocarbon, uranium-thorium, and paleomagnetic methods, while sedimentary and stable isotope records were analysed as paleoenvironmental proxies. The collective results from our analyses highlight the value of these terrestrial carbonates as chronologically reliable archives of paleoenvironmental conditions (Pentecost, 2005; Andrews, 2006), particularly in this semiarid region central to the study of human evolution.

Materials and methods

The massive tufa fan deposits spanning the length of the Ghaap Plateau escarpment are particularly well-developed in the areas of Taung (Buxton-Norlim Lineworks) and Ulco (Groot Kloof and Gorrokop) (Fig. 1a). At Buxton-Norlim, on the north-eastern edge of the escarpment, discharge from the groundwater-fed Thabaseek River has deposited extensive tufa formations since the Pleocene (Fig. 1b; Peabody, 1954; Butzer, 1974; McKee, 1993a,b). In 1924, lime quarry operations along the eastern edge of the southernmost Thabaseek Tufa formation yielded the Taung Child skull, which provided the first fossil evidence for an ape-like human ancestor and the type specimen of A. africanus (Dart, 1925). Continued mining operations destroyed the provenance of the skull and much of the geological context, however, two pavements, known as the Dart and Hrdlička pavements, were left in place on either side, and slightly north, of the suspected discovery site (Partridge, 2000). Recent investigations demonstrate that the Taung Child skull derives from a calcrete horizon overlain and underlain by Marine Oxygen Isotope Stage (MIS) 7 (248 ± 37 ka; Curnoe et al., 2006), coeval with the formation of the Oxlund Tufa at Taung (256 ± 21 ka; Vogel and Partridge, 1984), and suggesting contemporaneous formation of the deposits at both sites (Butzer et al., 1978). Slightly further south again is the active tufa complex of Gorrokop mined in the late 1980s. A section, known as Malony’s Kloof, consists of remnant tufa deposits into which a series of rockshelters have been eroded as part of the development of the kloof (Fig. 1d). At Malony’s Kloof Rock Shelter A (MKA), a calcified 8 m long talus slope is reinforced by tufa deposits that have subsequently been weathered by drip water and later infilled with soft sediments. Brecchia deposits from the opening of MKA contain microlithic stone tools characteristic of an early Later Stone Age style assemblage and Florissian fauna (Herries et al., 2007).

A small number of hand specimens were collected from the Plio-Pleistocene Thabaseek Tufa between the Dart and Hrdlička Pavements at Buxton-Norlim (Fig. 1b), as well as from tufa formations of various ages at Groot Kloof (Fig. 1c) and Gorrokop, including Malony’s Kloof (Fig. 1d) for chronometric and paleoenvironmental analyses. The field characteristics and localities of eleven hand specimens selected for petrographic and geochemical analyses are listed in Table 1. To investigate the calcite fabric and microstructure, thin sections were made and viewed under a polarizing microscope; some selected samples were also subjected to quantitative mineralogical analysis by X-ray diffraction (XRD). Stable isotope subsampling was carried out on polished, cut sections from each of the eleven hand specimens. Detailed descriptions of the analytical procedures are provided in the Supplementary data.

Results

Dating results

Measured AMS 14C/13C ratios were converted to conventional radio-carbon ages after background subtraction and 13C fractional correction (437 ± 103 yr) (Supplementary data), and were calibrated using OXCal 4.2 and the ShCal13 curve (Hogg et al., 2013).

A comparison of a dead carbon fraction (DCF) corrected C14 age and U–Th age for the same samples gave consistent ages (Tables 2 and 3). Tufa sample GKD_C14_05 was dated to 5.4 ± 0.2 cal ka BP by AMS 14C and 5.8 ± 5.2 ka by U–Th, demonstrating close alignment. Likewise, sample MKA_06_C14_04 was dated to 10.7 ± 0.2 cal ka BP by AMS 14C and 11.6 ± 6.2 ka by U–Th, also showing good correspondence. DCF changes have only a small relative effect on the final age of ‘old’ tufa samples and AMS 14C offers good age control for the tufas in the time range of 44–0 cal ka BP. Significant detrital Th contributed to the large 1σ uncertainty associated with these ages and accounts for a larger overlap with both 14C ages, yet the average U–Th ages calculated are still very similar. Both 14C ages are slightly younger than their U–Th

Figure 1. a) Locations of Buxton-Norlim, Groot Kloof, and Gorrokop (containing Malony’s Kloof) along the Ghaap Plateau (after Butzer, 1974). Inset shows the position of the Ghaap Plateau (shaded) within South Africa. b) Overview of the formations at the Buxton-Norlim Lineworks as reconstructed by Peabody (1954) showing the Thabaseek Tufa with the outcrop localities of the Dart Pinnacle (D) and Hrdlička Pinnacle (H) (above); diagram of the remnant Dart and Hrdlička pavements (27°37′10″S, 24°37′59″E) and the NW-SE sample collection transect (dashed line) (below) (after McKee, 1993b). c) Diagram of Groot Kloof (28°34′59″S, 24°18′23″E) within the escarpment of the Ghaap Plateau (after Butzer, 1974) (left); view of Groot Kloof Locality D (GKD) showing the major site features — Tufa 1 (T1), Tufa 2 (T2), Tufa 3 (T3), the Groot Kloof Tufa Cave (GKT) (after Curnoe et al., 2006) (above right); generalized cross-section of the GKD tufa formations (after Butzer, 1974) (below right). d) Diagram of the localities of Gorrokop and Malony’s Kloof (28°36′35″S, 24°16′69″E) within the escarpment of the Ghaap Plateau (left); generalized cross-section of Malony’s Kloof Rockshelter A with tufa sample locations (right).

counterparts, which may indicate that the DCF correction has been over-estimated. However, at 5.3 ± 1.2%, it is already significantly lower than that applied in other studies (e.g. Horvatinčič et al., 2003) and the uncertainties of the U–Th ages do not allow for a more accurate appraisal.

Micromorphology results

The main micromorphological characteristics and primary mineral components of eleven hand specimens analysed as paleoenvironmental proxies are listed in Table 1. The Thabaseek Tufa specimens studied (TDPC 2, 7, 16, 26) can all be classified as phytotherm boundstones (Pedley, 1990) or as microphytic thrombolitic tufa (Carthew et al., 2006). The microfacies is characterised by a three-dimensional thrombolitic texture in which microbial carbonate outlines form irregular equidimensional clots – formed of smaller clots internally. In thin section, the Thabaseek Tufa specimens consist of micrite, peloids, fenestral pores, and phytomoulds of calcite-encrusted hydrophytic plant stems (Fig. 2a). All Thabaseek thin sections contain a fenestral porosity.
that is often associated with branching, bifurcating networks of subvertical casts of hydrophytic plant stems (2–4 mm in cross-section of hand specimens). In TDPC 7, the thrombolite is characterised by a grumose texture of clotted peloids, which is superimposed upon a framework of inclined algal filaments and in situ hydrophytic plant stems, the subaqueous parts of which became encrusted by radial calcite spar cement during growth (Fig. 2b). The prevalence of hydrophilic plants in the form of these mouldic pores filled by alternating envelopes of spar and micrite suggests that these deposits formed subaqueously, in the vicinity of a palustrine environment, in a position peripheral to a flowing channel or on the margins of the slow-flowing and pooled areas where hydrophilic vegetation would have grown thickly and protected encrusting biofilms (Vázquez-Urbez et al., 2012). The low detrital component (< 1% of thin section), dearth of phytoclastic intervals, absence of bryophytes and oncocoids (with one possible exception), and widespread occurrence of ostracodes, suggests these are phytoherm tufas that formed in a subaqueous, dominantly sluggish water pool environment, probably at the margins of ponded areas behind barriers (see Supplementary data for full results) (Arenas et al., 2007).

The Groot Kloof and Malony’s Kloof tufas are a combination of phytoherm framestone and phytoherm boundstone deposits (Pedley, 1990), characterised largely by stromatolitic facies. In thin section, the laminar structure is generally constituted by alternated millimetric light sparitic to dark micritic calcite laminae ranging from planar to wavy and distinguished by differences in colour, thickness, and crystal formations, with variations in porosity and microbial inclusions (Jones and Renaut, 2010). The decay of organic inclusions has also generated void space, which has either remained empty or secondarily infilled by micrite, isopachous rim cement, sparry calcite, and drusy mosaic cements. While all of the thin sections of the Ulco tufas are cemented

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Tufa phase</th>
<th>238U ng/g</th>
<th>232Th/238U (a)</th>
<th>232Th/238U (b)</th>
<th>232Th/238U (c)</th>
<th>Age (ka) (d)</th>
<th>2σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GKD_UTH_13</td>
<td>T1</td>
<td>309</td>
<td>2.0816 (0.0058)</td>
<td>1.8452 (0.0034)</td>
<td>0.187801 (0.001940)</td>
<td>3.4751 (0.0427)</td>
<td>369.4</td>
</tr>
<tr>
<td>MKA_C1_01</td>
<td>T2</td>
<td>19</td>
<td>1.2586 (0.0162)</td>
<td>1.2718 (0.0177)</td>
<td>0.116885 (0.004082)</td>
<td>1.6138 (0.0282)</td>
<td>10.8</td>
</tr>
<tr>
<td>GKD_UTH_12</td>
<td>T2</td>
<td>91</td>
<td>1.6537 (0.0129)</td>
<td>1.7089 (0.0050)</td>
<td>0.051171 (0.000948)</td>
<td>2.3415 (0.0185)</td>
<td>32.3</td>
</tr>
<tr>
<td>GKD_UTH_11</td>
<td>T2</td>
<td>66</td>
<td>1.3619 (0.0203)</td>
<td>1.8288 (0.0077)</td>
<td>0.013163 (0.000339)</td>
<td>2.1927 (0.0148)</td>
<td>103.5</td>
</tr>
<tr>
<td>MKA_04</td>
<td>T4</td>
<td>114</td>
<td>0.3072 (0.0046)</td>
<td>2.0341 (0.0080)</td>
<td>0.072686 (0.001032)</td>
<td>2.0869 (0.0094)</td>
<td>4.2</td>
</tr>
<tr>
<td>GKD_C14_05</td>
<td>T4</td>
<td>131</td>
<td>0.2149 (0.0032)</td>
<td>2.2566 (0.0071)</td>
<td>0.067679 (0.000892)</td>
<td>2.2956 (0.0074)</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Table 3: Uranium–Thorium dates for samples from Groot Kloof and Malony’s Kloof.

a) Numbers in brackets are 95% uncertainties of the given least significant figures; b) activity ratios determined after Hellstrom (2003) using the decay constants of Cheng et al. (2000). Numbers in brackets are 95% uncertainties of the given least significant figures; c) initial (235U/238U) calculated using corrected age; and d) bold ages in ka before present corrected for initial 230Th using eq. of Hellstrom (2006) quoted in text.

Figure 2. Micrographs of the Thabaseek Tufa and Groot Kloof tufa thin sections (under crossed polarised light). a) Thrombolitic texture of the Thabaseek Tufa showing micrite, peloids, fenestral porosity (TDPC 2; ppl width of view 4.5 mm). b) Linear filamentous fabric seen in transverse to oblique view of a phytoherm boundstone of microstems (algal filaments) encrusted by isopachous radial calcite spar (TDPC 7; ppl width of view 2.2 mm). c) Calcitization and cementation of void space characterising the ancient Ulco specimens (lower part of GKD_UTH_01; ppl width of view 3 mm). d) Dense planar to wavy laminae showing primary porosity of younger Groot Kloof deposits (GKD_UTH_04; ppl width of view 7 mm).
to some degree, those sampling ancient formations at Groot Kloof and Malony’s Kloof (GKD_UTH_01, GKDPM2, MKPM1, MKA_03) (Fig. 2c) exhibit more complete cementation relative to those from modern deposits (GKD_UTH_04, GKD_C14_04) (Fig. 2d). It is notable, however, that the upper ~1 cm strata of MKA_03 and GKD_UTH_01, evince a marked increase in void space and fenestral porosity, which is contrast to the high degree of cementation observed in the respective basal sections (Supplementary data). As such, the top layers of both GKD_UTH_01 and MKA_03 deposits are interpreted as recent coatings of calcite deposited upon the respective older formations, which is confirmed by radiocarbon ages for MKA_03 discussed further below.

Stable isotope results

The stable isotope data for the Ghaap Plateau escarpment tufas analysed are summarised in Table 4 (see Supplementary data for full results). The Thabaseek Tufa (TDPC 2, 7, 16, 26) samples yielded relatively light δ^{18}O and δ^{13}C values with overall means of −6.0‰ and −6.5‰, respectively. Similarly, the Malony’s Kloof T1 (MKPM1, MKA_03) specimens also have consistently light values with the exception of the uppermost sample from the Malony’s Kloof Rock Shelter A tufa deposit (MKA_03_Sample01). The anomalously high δ^{18}O and δ^{13}C (−1.9‰ and 1.9‰, respectively) of this sample correspond with the micromorphological incongruities observed in the top portion of the deposit. Overall, the clustered values of the Thabaseek Tufa and Malony’s Kloof tufa deposits contrast the variation observed amongst the Groot Kloof Matuyama Chron between 2.58 and 1.95 Ma, whereas the reversed polarity of the cave fills is likely related to the beginning of the early Pleistocene Matuyama Chron between 2.58 and 1.95 Ma (Herries et al., 2013). At Groot Kloof, the canyon formed through the oldest tufa deposit (T1) has been partially in-filled by a number of later tufa deposits that have been U–Th dated to as old as 369 ± 12 ka, which demonstrates not only the amenability of certain parts of tufa deposits to U–Th dating, but also a minimum age for the oldest T1 deposit (Table 3). The T1 tufa also has a normal magnetic polarity, and as such, may not be older than the Brunhes–Matuyama boundary at 780 ka, the last major reversal of the Earth’s magnetic field. However, Electron Spin Resonance analyses on a leachew (Kobus leche) tooth from calcified sediments at GKD provided an age range of 1.05–0.80 Ma (Blackwell et al., 2012), and thus, the normal magnetic polarity may correspond to the Jaramillo Subchron (1.07–0.98 Ma), or could, as Buzer (1974; et al., 1978) hypothesised, be the same age as the normal polarity Thabaseek Tufa at Taung.

At Gorrokop, the oldest tufa deposit through which Malony’s Kloof has been eroded also records a normal magnetic polarity (MKPM1), while the radiocarbon ‘infinite’ age (MKA_03) indicates that the age of the deposits exceeded the limits of this dating technique (~50 ka) (Table 2). The oldest dated sample at Malony’s Kloof comes from the Tufa 2 (T2) deposit that formed within the kloof itself and has yielded age of 275 ± 29 ka (Table 3) thereby showing a similar pattern of formation to Groot Kloof. The oldest well-dated tufas from both Groot Kloof and Malony’s Kloof are thus at least Middle Pleistocene in age. Given the weathered nature of stratigraphically older Malony’s Kloof T1, however, it is possible that Pliocene tufas exist at both Ulco localities, as at the Buxton-Norlim Limeworks. The stable isotope records from the Malony’s Kloof T1 tufa, which groups with those of the Thabaseek Tufa, may confirm a much earlier, similarly Pliocene age, for this formation. Excluding MKA_03_Sample01 that groups with the younger Ghaap tufas from Groot Kloof, the Thabaseek Tufas and Malony’s Kloof T1 deposits record the lowest δ^{18}O values ranging from −6.5‰ to −4.9‰ (mean = −5.8‰), and even more distinctly, the lowest δ^{13}C values ranging from −7.8‰ to −5.4‰ (mean = −6.0‰) (Table 4). Within this Pliocene group, the Thabaseek tufa deposits have slightly higher

Table 4

<table>
<thead>
<tr>
<th>Sample site</th>
<th>Sample name</th>
<th>δ^{18}O</th>
<th>δ^{13}C</th>
<th>Number of analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Buxton-Norlim,</td>
<td>TDPC 2</td>
<td>−6.4‰</td>
<td>−6.5‰</td>
<td>−6.1‰</td>
</tr>
<tr>
<td>Thabaseek Tufa</td>
<td>TDPC 7</td>
<td>−5.9‰</td>
<td>−6.0‰</td>
<td>−5.8‰</td>
</tr>
<tr>
<td></td>
<td>TDPC 16</td>
<td>−5.8‰</td>
<td>−5.9‰</td>
<td>−5.7‰</td>
</tr>
<tr>
<td></td>
<td>TDPC 26</td>
<td>−5.9‰</td>
<td>−6.0‰</td>
<td>−5.9‰</td>
</tr>
<tr>
<td>Ulco, Malony’s Kloof</td>
<td>MKPM1</td>
<td>−5.2‰</td>
<td>−5.3‰</td>
<td>−5.1‰</td>
</tr>
<tr>
<td></td>
<td>MKA_03</td>
<td>−5.3‰</td>
<td>−5.5‰</td>
<td>−4.9‰</td>
</tr>
<tr>
<td></td>
<td>GKD_UTH_01</td>
<td>−3.3‰</td>
<td>−3.8‰</td>
<td>−2.5‰</td>
</tr>
<tr>
<td>Ulco, Groot Kloof</td>
<td>GKDPM2</td>
<td>−3.8‰</td>
<td>−4.7‰</td>
<td>−3.5‰</td>
</tr>
<tr>
<td></td>
<td>GKD_UTH_08</td>
<td>−3.0‰</td>
<td>−3.4‰</td>
<td>−1.9‰</td>
</tr>
<tr>
<td></td>
<td>GKD_UTH_04</td>
<td>−2.1‰</td>
<td>−2.6‰</td>
<td>−1.3‰</td>
</tr>
<tr>
<td></td>
<td>GKD_C14_01</td>
<td>−1.9‰</td>
<td>−2.9‰</td>
<td>−0.4‰</td>
</tr>
</tbody>
</table>

(*) The bracketed statistics in MKA_03 and GKD_UTH_01 are inclusive of the divergent values of the respective uppermost sampling on both specimens (MKA_03_Sample01; GKD_UTH_01_Sample01), which are interpreted as representing more recent growth.

Pliocene (TDPC 2, 7, 16, 26; MKPM1; MKA_03)

The first group, representing the oldest deposits, consists of the Pliocene Thabaseek Tufa and the Malony’s Kloof T1 specimens. The Thabaseek Tufas at the Buxton-Norlim Limeworks record a normal magnetic polarity, while sediments infilling caves formed within these deposits record a reversed polarity (Hopley et al., 2013). Based on fauna associated with these tufas (McKee, 1993a), the normal polarity of the Thabaseek tufa exposed between the Dart and Hrdlička Pinnacles (TDPC 2, 7, 16, 26) is likely related to the end of the Pliocene Gauss Chron between 3.03 and 2.58 Ma, whereas the reversed polarity of the cave fills is likely related to the beginning of the early Pleistocene Matuyama Chron between 2.58 and 1.95 Ma (Herries et al., 2013). At Groot Kloof, the canyon formed through the oldest tufa deposit (T1) has been partially in-filled by a number of later tufa deposits that have been U–Th dated to as old as 369 ± 12 ka, which demonstrates not only the amenability of certain parts of tufa deposits to U–Th dating, but also a minimum age for the oldest T1 deposit (Table 3). The T1 tufa also has a normal magnetic polarity, and as such, may not be older than the Brunhes–Matuyama boundary at 780 ka, the last major reversal of the Earth’s magnetic field. However, Electron Spin Resonance analyses on a leachew (Kobus leche) tooth from calcified sediments at GKD provided an age range of 1.05–0.80 Ma (Blackwell et al., 2012), and thus, the normal magnetic polarity may correspond to the Jaramillo Subchron (1.07–0.98 Ma), or could, as Buzer (1974; et al., 1978) hypothesised, be the same age as the normal polarity Thabaseek Tufa at Taung.

At Gorrokop, the oldest tufa deposit through which Malony’s Kloof has been eroded also records a normal magnetic polarity (MKPM1), while the radiocarbon ‘infinite’ age (MKA_03) indicates that the age of the deposits exceeded the limits of this dating technique (~50 ka) (Table 2). The oldest dated sample at Malony’s Kloof comes from the Tufa 2 (T2) deposit that formed within the kloof itself and has yielded age of 275 ± 29 ka (Table 3) thereby showing a similar pattern of formation to Groot Kloof. The oldest well-dated tufas from both Groot Kloof and Malony’s Kloof are thus at least Middle Pleistocene in age. Given the weathered nature of stratigraphically older Malony’s Kloof T1, however, it is possible that Pliocene tufas exist at both Ulco localities, as at the Buxton-Norlim Limeworks. The stable isotope records from the Malony’s Kloof T1 tufa, which groups with those of the Thabaseek Tufa, may confirm a much earlier, similarly Pliocene age, for this formation. Excluding MKA_03_Sample01 that groups with the younger Ghaap tufas from Groot Kloof, the Thabaseek Tufas and Malony’s Kloof T1 deposits record the lowest δ^{18}O values ranging from −6.5‰ to −4.9‰ (mean = −5.8‰), and even more distinctly, the lowest δ^{13}C values ranging from −7.8‰ to −5.4‰ (mean = −6.0‰) (Table 4). Within this Pliocene group, the Thabaseek tufa deposits have slightly higher
The second group comprises the middle Pleistocene Tufa 2 (T2) deposits from Groot Kloof with ages between 380–124 ka (GKD_UTH_01, GKDPM2). A preliminary U–Th age of 248 ± 37 ka (Curnoe et al., 2006) for a well-laminated, non-porous tufa (GKDPM2) from T2 indicates that the younger tufas at Groot Kloof are as old as the Middle Pleistocene. Further U–Th dating of tufa infillings from T2 suggest deposition occurred during a number of interglacial periods: 369 ± 12 ka (MIS11-10 transition), 221 ± 6 ka (MIS7), and 127 ± 3 ka (MIS 5) (Table 3), including, by association, Groot Kloof specimen GKD_UTH_01, which has not yet been dated. In conjunction with a 275 ± 29 ka (MIS 9) age from Malony’s Kloof, these collective ages for the Ghaap tufa cover the last 4 interglacial periods. While GKD_UTH_12 (221 ± 6 ka) formed during MIS7, the ages are such that it may have fallen in the cold substage 7d. On the other hand, any relatively recent uranium mobility within the samples would have had the largest impact on the oldest samples, which might, for instance, actually represent MIS 7a/c, 7d, and 9; the current data set for each sample, however, is too limited to allow for identification of any such trends. These Middle Pleistocene T2 deposits from Groot Kloof (GKD_UTH_01; GKDPM2) show higher and, more variable isotopic compositions (Table 4). Not including the uppermost sample of GKD_UTH_01 (Sample01), which plots within the terminal Pleistocene–Holocene deposits, the δ18O values in this group range from −4.7‰ to −2.5‰ (mean = −3.7‰), while δ13C values range from −5.1‰ to −3.0‰ (mean = −3.6‰) (Table 4).

Terminal Pleistocene–Holocene (GKD_UTH_08, GKD_UTH_04, GKD_C14_04)

A series of tufa deposits formed within an eroded canyon of a middle Pleistocene tufa deposit (T3) at Groot Kloof yielded comparable ages of 44 ± 0.8 cal ka BP (GKD_UTH_08), 44 ± 0.8 cal ka BP, and 40 ± 0.8 cal ka BP (Table 2). Tufa samples forming on the dolomite wall of Groot Kloof (GKT4) produced Holocene ages of 5.4 ± 0.2 cal ka BP, 2.1 ± 0.2 cal ka BP (GKD_UTH_04), and the last few 100 yr (0.3 ± 0.1 cal ka BP: GKD_C14_04) (Table 3), while ICPMS U–Th methods yield ages of 5.8 ± 5.2 ka (Table 3). At Malony’s Kloof Rock Shelter A (MKA), tufa samples from cemented early Later Stone Age and Florisian (> 10 ka) fossil bearing deposits (Curnoe et al., 2006) were dated using 14C methods to 11 ± 0.2 cal ka BP and 4.5 ± 0.2 cal ka BP (Table 2). These are consistent with a potential Holocene age for the outer layers of MKA_03 (Sample01), which record the highest δ18O and δ13C values that plot with these younger deposits. Thus, the third group comprises the terminal Pleistocene to Holocene specimens from Groot Kloof (GKD_UTH_08; GKD_UTH_04; GKD_C14_04), as well as the top samples from MKA_03 (Sample01) and GKD_UTH_01 (Sample01), which collectively show the highest isotope values, as well as the highest degree of variability. δ18O values of this group range from −3.4‰ (GKD_UTH_08) to −0.4‰ (GKD_C14_04), while δ13C values range from −1.9‰ (GKD_UTH_04) to 1.9‰ (MKA_03) (Table 4). The isotopic variability observed within these deposits is likely a reflection of the fact they include tufas of not only interglacial (late Holocene samples: GKD_UTH_04; GKD_C14_04), but also upper Pleistocene glacial age (GKD_UTH_08: ~44 ka), unlike the older Middle Pleistocene Group deposits (GKDPM2; GKD_UTH_01).

Discussion

Patterns in the timing of tufa growth

The collective dating results of the present study, which are compatible with previously reported 14C ages for Groot Kloof and Gorrokop tufa (Butzer et al., 1978; Beaumont and Vogel, 1993), demonstrate that tufa deposition was not restricted to interglacial periods during the last glacial cycle (Tables 2 and 3); albeit, the geomorphological cycle of Ghaap tufa deposition appears to have been inactive during the Last Glacial Maximum. When comparing the radiocarbon and U–Th ages to the stacked benthic δ18O record of global glacial and interglacial cycles (LISIECKI and Raymo, 2005; JOUZEL et al., 2007) it appears that Ghaap tufa growth was more common during interglacial periods than during full glacial conditions (Fig. 3). Variations in local insolation (27°S) are dominated by the precession cycle, but this seems to have little influence on the timing of tufa growth. Sedimentary evidence from the upper part of the Tsraing Crater sedimentary record indicates the increasing importance of regional influences at the expense of the precessional cycle when climatic changes appear to have been driven increasingly by stadial/interstadial cycles after ~50 ka (Partridge, 2002; Holmgren et al., 2003). A radiocarbon age of 44.2 ± 0.8 ka for Groot Kloof tufa GKD_UTH_08 (Table 3) provides evidence of tufa growth during interglacial periods when younger deposits occur.
formation matching speleothem growth phases recorded in several southern African caves, including Gladysvale (56–42 ka; Pickering et al., 2007), Lobatse Cave (51 ± 2–43 ± 0.1 ka; Holmgren et al., 1995), and Wolkberg Cave (58 ± 0.6–46 ± 0.3 ka; Holzkämper et al., 2009). The Tswoa Crater sequence indicates humid conditions from −55 ka to 48 ka followed by a gradual transition from warmer to colder conditions with a short humid period around 40 ka (Scott et al., 2008). Likewise, the carbon isotope record of a stalagmite from Lobatse Cave shows a jump in δ13C values from −5.5% to −6% at −48 ka signalling a transition to drier, colder conditions (Holmgren et al., 1995; Holzkämper et al., 2009). At Wolkberg Cave, the stable isotope record from the upper part of the W5 stalagmite shows a shift towards lower, more variable δ18O values that strongly correlate with the significantly increased carbon isotope values. In conjunction with a change in the primary mineral constitution from calcite to aragonite, the collective evidence from Wolkberg cave indicates a change towards less effective moisture from 58 ka to 46 ka, which is attributed to an increased evaporation/precipitation ratio and progressively drier and colder conditions (Holzkämper et al., 2009). T3 specimen GK0_UTH_08 from this period shows evidence analogous to that of the W5 stalagmite, namely positive carbon isotope values that correlate with a variable oxygen isotope record. It is also notable that this is the only Ghaap tufa specimen analysed with evidence of an aragonite phase, which is interpreted as an indicator of aridity. During glacial, cooler temperatures and reduced evaporation could also lead to increased effective precipitation, even where rainfall was reduced, and thus permit flowstone (Pickering et al., 2007) and tufa formation.

Tufa stable isotopes and paleoenvironments

Petrographic analysis, undertaken to evaluate the influence of diagenetic alteration, demonstrates the preservation of primary fabrics (clotted/peloidal textures, laminations), as well as secondary features (pore-filling cements, micritisation) (Nicoll et al., 1999). Although diagenesis can modify the depositional isotope composition, diagenetic alteration of the Ghaap Plateau escarpment tufa was restricted to cementation of void space, which can occur very early after tufa deposition, generally from waters with the same chemical characteristics, and thereby have no significant effect on the primary isotopic record (Lojen et al., 2004; Arenas-Abad et al., 2010). Moreover, examination of geochemical research on tufas has found no unequivocal evidence that diagenesis is either pervasive or that it significantly changes the depositional stable isotope composition (Andrews, 2006). Based on the collective mineralogical and micromorphological evidence, therefore, the isotopic compositions of the Ghaap Plateau escarpment tufa deposits are considered fairly pristine and reliable records of paleoenvironmental conditions.

Interpretation of paleoenvironmental signals from tufa carbonate geochemistry presents no small challenge, however, owing to the uncertainties introduced by a range of chemical, biological, geomorphic, and hydrologic controls potentially affecting isotopic variability (Andrews, 2006). Despite an imperfect understanding of the formational mechanisms and the short-term environmental variables that can disrupt isotopic equilibrium, the data do allow for broad paleoclimatic interpretations (Andrews et al., 2000). The rapid formation of these deposits typically spanning less than 5000 yr means the geochemical signature reflects paleoenvironmental conditions on a highly resolved temporal scale (Andrews, 2006). At the centimetre scale used in the current study, each sample represents environmental variations averaged out over multi-annual to decadal long periods (Garnett et al., 2004).

The mean oxygen isotope values from the collective Ghaap Plateau escarpment tufa deposits demonstrate a gradual increase from −5.7‰ in the Pleistocene records, to −3.7‰ in the middle Pleistocene, and to −2.3‰ in the Holocene (Fig. 4a). This trend towards higher δ18O values with decreasing age parallels that observed in speleothems from the Makapansgat Valley, in northeastern South Africa where late Miocene/early Pliocene mean values of −5.7‰ (Hopley et al., 2007a) increase to −4.9‰ in the Plio-Pleistocene (Hopley et al., 2007b), and to −3.7‰ in the Holocene (Holmgren et al., 2003; Hopley et al., 2007a) and Holmgren et al. (2003) attribute most of this long-term trend to the gradual increase in global ice volume during this time, suggesting that once ice volume changes were taken into account, long-term changes in cave temperature or the isotopic composition of cave dripwaters were small. However, the Pliocene to Holocene ice-volume effect was less than 2‰ and glacial-interglacial variability was less than 1‰ (Shackleton, 1995), indicating that ice volume cannot offer a full explanation for the −4% gradual increase in the δ18O record of the Ghaap Plateau escarpment tufas. The larger increase in δ18O of the Ghaap tufas indicates that additional processes are contributing to the isotopic trend not present in the speleothem records. To a first approximation, it is expected that both regions of South Africa would have experienced similar (and small) long-term trends in the δ18O of rainfall and in surface air temperature, and therefore, that these parameters are not responsible for the amplified δ18O signal in the Ghaap tufa record. Instead, it is more likely that surface water evaporation is the strongest control on the tufa δ18O trend, as has been demonstrated for tufa deposits from other semi-arid regions (e.g. Smith et al., 2004; Cremaschi et al., 2010).

Modern day mean annual rainfall δ18O values for South Africa are approximately −3‰ (IAEA/WMO, 2014); at a mean annual temperature of 18°C, modern calcite is precipitated with a δ18O value of −3.3‰ under conditions of isotopic equilibrium (Craig, 1965). During MIS 3 and 2 (44–24 ka), the δ18O of Kalahari groundwater averaged −5.6‰ (Kulmongoski et al., 2004); assuming a temperature of 15°C equilibrium calcite precipitation would have an δ18O value of −5.2‰ at this time. Taking global ice volume into account we can make a crude assumption that the δ18O of rainfall over South Africa was approximately −5.5‰ and −6.5‰ in the Late Pleistocene and Plio-Pleistocene, respectively, and that equilibrium calcite precipitation, likewise, should be approximately −5.5‰ and −6.5‰, assuming a temperature intermediate between glacial and interglacial extremes (17°C). Based on these simple calculations, we can infer that the Plio-Pleistocene tufas from the Ghaap plateau are close to their predicted equilibrium δ18O values of −6.5‰, whereas the middle Pleistocene to Holocene tufas are increasingly isotopically enriched relative to the predicted equilibrium values (Fig. 4a). This is often observed in tufas from a number of other semi-arid regions (e.g. Smith et al., 2004; O’Brien et al., 2006; Cremaschi et al., 2010) as evaporation, degassing, and kinetic effects all tend to increase δ18O values relative to the predicted equilibrium compositions.

The relatively high carbon isotope values from the Ghaap Plateau escarpment deposits (≥−8‰) parallel those observed in tufa from other semi-arid environments where C4 vegetation is more common (Fig. 4b; Smith et al., 2004). Low δ13C values can be related to both primary C3 vegetation and a high soil-derived CO2 input during periods of low-aridity (Andrews et al., 2000; O’Brien et al., 2006). Within the general trend of tufa carbon and oxygen isotopes, those of the Plio-Pleistocene deposits have the lowest δ13C values, consistent with well-developed soil profiles and a greater proportion of C4 vegetation at this time. The lowest δ13C values from the Plio-Pleistocene tufas deposits (mean: −7.1‰), therefore, likely reflect the input of soil carbon into the DIC of tufa-depositing waters (Chafetz et al., 1991), perhaps indicating only a minor proportion of C4 vegetation. In contrast, high δ13C values are commonly associated with either a flora dominated by C4 plants and/or a deeper introduction of atmospheric CO2 into the soil during arid stages, when soil respiration is diminished that results in an increase in the 13C of the soil CO2 (Andrews, 2006). In comparable arid environments, such as Egypt, Kenya, and Arizona, the low negative to low positive δ13C values of carbonate precipitates have been interpreted as reflecting less soil-zone input due to increased aridity (Smith et al., 2004; O’Brien et al., 2006; Lee et al., 2013). Accordingly,
the higher δ¹³C values obtained for the tufa deposits in the Middle Pleistocene and Holocene groups from the Ghaap plateau (Fig. 4a) are associated with mixed C₃/C₄ vegetation (as occurs in the modern day), as well as thinner soils in the recharge area (Andrews et al., 1997; Andrews, 2006). Humidity strongly influences the development of flora and soils, which respond to changes in rainfall (Andrews et al., 2000); as such, we would expect to see δ¹³C values of tufa deposits to vary with the δ¹⁸O evaporation/aridity proxy. Taken together, the observed trend in both tufa δ¹⁸O and δ¹³C records is primarily an indicator of increasing aridity over time in the Ghaap Plateau region of South Africa (Fig. 4a). It is interesting to compare this trend with a similar compilation of tufa stable isotope measurements from the early Pleistocene to late Pleistocene of equatorial eastern Africa (see Fig. 4b). The eastern and southern African isotope values are comparable in the late Pleistocene, but they diverge in the Plio-Pleistocene when the South African tufas exhibit lower δ¹³C and δ¹⁸O values, suggestive of a less arid environment. In

Figure 4. a) Cross-plot of stable isotope data from the Ghaap Plateau escarpment tufa plotted with δ¹⁸O and δ¹³C data from Quaternary tufas. The tufa specimens are divided into three distinct groups based on their stable isotope composition reflecting different paleoclimatic regimes: the Plio-Pleistocene Thaba Seek Tufa and Makony's Kloof deposits, the Middle Pleistocene Groot Kloof tufa, and the terminal Pleistocene–Holocene deposits from Groot Kloof (including the modern sampling from the tops of MKA_03 and GKD_UTH_01). Collectively, the observed trend in the stable isotope records largely reflects increasing aridity over time in the Ghaap Plateau region of South Africa following the trajectory of increased aridity and evaporation indicated by the marked arrow (after Andrews, 2006). b) Compilation of tufa stable isotope data from east Africa showing overlapping values from the early to late Pleistocene. Data from Kapthurin Formation, Lake Baringo, Kenya (500 ka; Johnson et al., 2009), Olorgesailie, Kenya (290 ka; Lee et al., 2013), Olduvai Gorge, Bed I, FLK NN (1.8 Ma; Ashley et al., 2010), and Kharga Oasis, Egypt (140–125 ka).
contrast, the East African tufas show a similar degree of aridity in both the early Pleistocene and the late Pleistocene (see Fig. 4b). This may indicate that modern levels of aridity occurred earlier in equatorial east Africa than it did in southern Africa.

During the Plio-Pleistocene, the combined influence of several large-scale climatic processes directly contributed to the general drying trend characterised by the expansion of C4 vegetation observed in southern Africa (Maslin and Christensen, 2007). In particular, the Northern Hemisphere Glaciation and corresponding initiation of obliquity paced northern hemisphere glacial cycles, beginning and intensifying between 3.2 and 2.6 Ma, are associated with climatic transitions towards increasingly arid conditions (deMenocal, 2004). These changes manifest terrestrially as an expansion of C4 grasses predominantly in regions experiencing a reduction in rainfall (Ehleringer et al., 1991, 1997; Hopley et al., 2007a). Analysis of biomarker carbonate δ13C demonstrates the presence of C4 vegetation the early Pliocene (Segalen et al., 2006) with the most significant environmental change to open, grassy landscapes only occurring after 2 Ma when arid conditions became dominant (Hopley et al., 2007a; Lee-Thorp et al., 2007). The Plio-Pleistocene Thabaseek Tufa δ18O data (−6.5‰ to −5.7‰; mean = −6.0‰; n = 12) correspond well with the δ18O data of the Miocene/Pliocene Collapsed Cone flowstone (−7.0‰ to −4.5‰; mean = −5.7‰; n = 239) from the Makapansgat Lineworks, South Africa (Hopley et al., 2007a). This indicates that evaporative or kinetic enrichment of δ18O is not a significant factor in the Thabaseek Tufa, and suggests that a regional δ18O of rainfall signal is recorded in these tufas. In the Makapansgat Valley speleothem δ13C records, the Collapsed Cone flowstone exhibits relatively invariant (range of 1.7‰) and more negative (mean = −8.1‰) values when compared with those of the lower part of the Buffalo Cave (1.99 to 1.70 Ma) (mean = −5.7‰) indicative of deposition under two contrasting climatic regimes, before and after the spread of C4 grasses (Hopley et al., 2007b). The δ13C record of the Thabaseek Tufa samples ranges from −7.0‰ to −3.4‰, with a mean of −6.5‰, consistent with a predominantly C4 vegetation, accompanied by the continual but minor presence of C3 plants. When compared to the Makapansgat record, the higher δ13C values of the Thabaseek Tufa relative to those from the Collapsed Cone record imply a commensurate increase in the proportion of C4 grasses; yet not to the degree indicated by the still higher values of the Buffalo cave flowstone. Increases in Thabaseek Tufa δ13C values reflect periods of increased C4 vegetation or reduced soil cover occurring in conjunction with increased aridity (as indicated by corresponding higher δ18O values).

Despite the discontinuous sediment chronology, the isotopic records from the Ghaap Plateau escarpment tufa deposits are consistent with the vegetation and climate trends observed in comparable proxies from southern Africa. Therefore, the complexities of quantifying the δ18O and δ13C records in terms of finer-scale processes without additional chronological constraints notwithstanding, the data implicate a strong and repeated climatic control on the geochemical record of the Ghaap Plateau escarpment tufas. The results of the present study highlight the large potential of longer tufa sequences for high-resolution paleoclimatic studies in the future.

Conclusion

Since the discovery of the Taung Child, the tufa deposits of the Ghaap Plateau escarpment have been recognized as important geologic records of past hydroclimatic conditions (Butzer, 1974; Butzer et al., 1978). The present study demonstrates the utility of the Ghaap Plateau escarpment tufa deposits to further provide reliable, high-resolution geochemical records of climate change amenable to chronometric dating methods. While this study precluded paleoenvironmental reconstructions, physical and chemical analyses of the Ghaap tufa present clear environmental signals that reflect deposition under distinct paleoclimatic regimes consistent with age. Furthermore, associations with fossil and paleolithic materials encased directly within tufa deposits highlight the value of these sediments not only as climatic archives, but also stratigraphic contexts, as in the case of the situ lithics embedded directly within the Groot Kloof formations. Likewise, deposits at both Groot Kloof and Malony’s Kloof may be contemporaneous with Pliocene hominin-bearing deposits at Buxton-Norlim and with which subsequent environmental associations can be made. This initial petrographic and geochemical study of the Ghaap Plateau escarpment tufa deposits has thus demonstrated their reliability as archives of paleoenvironmental information from the Pliocene onwards, and their potential for understanding the paleoclimate of South Africa over the course of hominin evolution.

Acknowledgments

This work was supported by an Australian Research Council (ARC) Future Fellowship grant (FT120100399) and Australian Institute of Nuclear Science and Engineering (AINSE) awards (07/068, 08/031, 08/032) to AIRH. Fieldwork and stable isotope analysis was supported by National Geographic Grants (#8774-10 and #3212) awarded to PJH. We would like to thank Curtis Marean, an anonymous reviewer, and Julian Andrews, who was especially helpful with his time and expertise, for their constructive comments and suggestions on this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.yqres.2015.04.008.

References

