Excavations, Surveys and Heritage Management in Victoria

Volume 5

2016
Contents

Editorial note 5

Papers

Salvage excavations at VAHR 7921-1151 ‘Lyndhurst Inland Port 6’: Carrum Swamp: Analysis of the archaeological assemblage 7

Meredith Fililhia, Paul Kucera, Racheal Minos and Kym Oataway

Djaara tachylite: Resource and distribution on Dja Dja Wurrung Country 17

Diana Smith and Raquel Kerr

A high-density stone artefact assemblage at Kororoit Creek, Rockbank, Victoria 23

Adrian Burrow, Elizabeth Foley and Birgitta Stephenson

Trends in Cultural Heritage Management Plan data in the Metropolitan Region, Victoria 31

David Thomas

At the distance of a snapshot (well, maybe more than one): Affordable 3D modelling of Aboriginal cultural heritage through photogrammetry 35

Francisco Almeida and Tya Lovett

A damaged past: The effects of historical artefact collecting on the stone artefact record in Victoria 47

Michael Lever

What people think are human bones: Preliminary results from the Victorian Institute of Forensic Medicine (VIFM)/La Trobe University animal bone project 51

Jillian Garvey, Soren Blau and Kimberley Crabtree

Understanding the life history of nineteenth century Australian bricks using archaeomagnetism and the establishment of the South East Australian Archaeomagnetic Dating Reference Curve (SEAARC) 59

Agathe Lisé-Pronovost, Tom Mallett, Sarah Myers, William Anderson, Anne-Louise Muir and Andy I.R. Herries

Interpreting nineteenth century cesspit discard from a historical archaeological site, 2–8 Sutherland Street, Melbourne 71

Caitlin Holzheimer
Flour power: Public archaeology at the Moses Thomas mill site 83
Jeremy Smith, Brandi Bugh, Maddison Miller, Anne-Louise Muir and Catherine Tucker

Religious expression and landscape use over time at the Necropolis Cemetery at Springvale 93
Jo Wilson

Abstracts

Foraging for cultural roots: Murnong and experimental archaeology 101
Maurizio Campanelli, Alice Mora, Abby Cooper, Daniel R. Clarke, Will Marks, Farren Branson, Michael Douglas, Lachlan Marks, Leigh Ryan, Bill Nicholson and Darren Griffin

Faunal analysis of the late Holocene Brown Creek 3 Marine Shell Midden, southwestern Victoria 102
Emmy Frost, Jillian Garvey and Andy I.R. Herries

Identifying Bearhurp; the hamlet that became Melbourne 103
Barry Green

Distinguishing between quartz pieces produced from knapping and other means: Problems and a suggested approach 104
Caroline Spry, Elizabeth Foley and Rebekah Kurpiel
The papers included here were presented at the fifth Victorian Archaeology Colloquium held at La Trobe University on 5 February 2016. As in previous years, we would like to thank all of the participants whose attendance testifies to the importance of this fixture within the local archaeological calendar. The Colloquium remains an important opportunity for consultants, academics, managers and Aboriginal community groups to share their common interests in the archaeology and heritage of Victoria.

The fifth volume of *Excavations, Surveys and Heritage Management in Victoria* includes a variety of papers that span Victoria’s Aboriginal and European past. Stone artefacts are a ubiquitous component of the Victorian archaeological record, and this is reflected by the number of papers investigating these activity traces, including two studies of unusually large stone artefact assemblages associated with Kororoit Creek (Burrow et al.) and Carrum Swamp (Fililhia et al.), an investigation of how tachylyte was used and distributed on Dja Dja Wurrung Country in central Victoria (Smith and Kerr) and research into how historical stone-tool collecting has impacted the integrity of stone artefact assemblages in Victoria (Lever).

Faunal remains also play an important role in our understanding of the past, and an investigation into what people mistake for human skeletal remains (Garvey et al.) will no doubt prove useful for future investigations of skeletal material in the field and laboratory.

Projects undertaken by Aboriginal Victoria and Heritage Victoria reveal insights into how government agencies are investigating trends in fieldwork and the identification of Aboriginal places in Metropolitan Melbourne (Thomas), using photogrammetry to record Aboriginal cultural heritage in the Hume region (Almeida and Lovett) and employing public archaeology to engage the broader community with Aboriginal and historical cultural heritage (Smith et al.).

The remaining papers discuss the important contributions that cemeteries (Wilson), cesspits (Holzheimer) and the archaeomagnetic properties of nineteenth century bricks (Lise-Pronovost et al.) can make in reconstructions of our post-European history.

We are especially grateful to presenters who were able to prepare more developed papers for publication. Other presenters allowed slides abstracted from their PowerPoint presentations to be included with their abstracts in this volume. These demonstrate the range of work being carried out in Victoria, and we hope that many of these will also form the basis for more complete studies in the future. All papers were refereed, and we would like to thank those who assisted with this task. Caroline Spry and Elizabeth Foley managed this process and the sub-editing of this volume. Layout, as in other years, was undertaken by David Frankel.

As with the previous volumes, the illustrations are all in black and white, although many would be clearer in their original colour. Anyone interested in having copies of these should contact the individual authors.

The 2016 Colloquium was generously supported our sponsors, Australian Cultural Heritage Management (ACHM), Andrew Long + Associates, Biosis, Green Heritage Compliance & Research, Extent, Heritage Insight and Ochre Imprints, as well as our supporters GML Heritage and the Department of Archaeology and History at La Trobe University.

The editors and authors acknowledge the Traditional Owners of the land and heritage discussed in this book, and pay their respects to their Elders, past and present.
Understanding the life history of nineteenth century Australian bricks using archaeomagnetism and the establishment of the South East Australian Archaeomagnetic Dating Reference Curve (SEAARC)

Agathe Lisé-Pronovost1, Tom Mallett1, Sarah Myers2, William Anderson3, Anne-Louise Muir4 and Andy I.R. Herries1

Abstract

Archaeomagnetism is a versatile tool for archaeologists and historians. In addition to being a robust dating method when sufficient data and reference curves are available, archaeomagnetic data can provide a wealth of information on artefacts and site histories. Here we present the first archaeomagnetic study on Australian bricks to assess the potential of this technique, and as a first stage in building the South East Australian Archaeomagnetic Reference Curve (SEAARC) for dating sites in the future. In collaboration with consulting archaeologists and Heritage Victoria, two types of nineteenth century bricks were analysed: handmade bricks, which were made and used in southeastern Australia, and refractory bricks, which were manufactured in Scotland and used in an iron foundry in Melbourne. The results provide meaningful insights into the bricks’ histories, including their provenance, manufacturing method and use. They also provide independent age estimates, and the capacity to unravel historical events such as fires. Moreover, the first archaeointensity experiments are in agreement with geomagnetic field modelling based on historical mariners’ measurements at sea, which is promising for palaeo-geomagnetic field research using Australian bricks.

Introduction

Archaeomagnetism is defined here as the application of magnetic methods of analysis drawn from the fields of palaeomagnetism (i.e. looking at ancient fossil remanence) and rock magnetism (i.e. investigating magnetic properties) to archaeological sites and artefacts (Herries 2009). Archaeomagnetic studies of archaeological artefacts, features and deposits for dating purposes has become a major field of archaeological science and geophysics over the last 50 years (Aitken 1970; Batt 2015; Belshé 1961; Cook and Belshé 1958; Herries et al. 2007; Kovacheva et al. 2014), most notably within a European and North American context (Goguitchaichvili et al. 2012; Herries et al. 2008). Most attempts to recover palaeomagnetic data in Australia have been from archives such as Aboriginal hearths and lake sediments (Barbetti 1977, 1983; Barbetti and McElhinny 1972; 1976; Barton and Barbetti 1982; Barton and McElhinny 1981). The pioneering archaeomagnetic work of Barbetti and others (Downey and Frankel 1992; Lawler et al. 2015) in southeastern Australia has shown that pre-colonial, Aboriginal burnt features can be used to recover archaeomagnetic data—although little follow-up work has been undertaken. This is perhaps in part because the early study by Barbetti and McElhinny (1972), which suggested the occurrence of a geomagnetic excursion at Lake Mungo (Lake Mungo Event), has been disputed (Huxtable and Aitken 1977). However, more recent work on the dating of these deposits (Bowler et al. 2003) suggests that they occurred 30–40 ka, a time period now known to include two globally recognized geomagnetic excursions (Mono Lake at 32 ka and Laschamp at 41 ka; Cassata et al. 2008; Singer 2014). The Lake Mungo record alone contains suitable material spanning the last 42,000 years, or possibly 50,000 years (Bowler et al. 2003), revealing excellent potential for building the oldest archaeomagnetic regional dating reference curve in the world.

More recently, archaeomagnetic methods have been expanded to answer questions about archaeological material and sites unrelated to dating, such as the identification of heat treatment of silcrete and chert to make flaked stone artefacts (Brown et al. 2009; Rowney and White 1997), and for understanding site formation processes (Gose 2000; Herries 2009), occupation intensity (Herries and Fisher 2010), ochre sourcing (Mooney et al. 2003) and climate change (Herries 2006). Archaeomagnetism is thus a very versatile method that should be employed as a standard method for all archaeological projects because it is inexpensive and, in
most cases, samples are easy to collect (Herries 2009).

Thermo-archaeomagnetic techniques are based on the ability of archaeological materials that were heated in the past to record all or part of the thermal history of an artefact, feature or deposit. Materials of this kind record the direction and intensity of the magnetic field when they were heated and cooled in that ancient field. This information can be used for dating purposes, as the ancient direction and intensity of the Earth’s magnetic field varies according to its vector components: declination, inclination and intensity. These components of the field vary over timescales of less than one second to millions of years, and they can include fluctuations such as complete 180º polarity reversals, geomagnetic excursions, jerks and pulsations. For dating to be effective, samples heated to high temperatures above the Curie temperature (T_c) of the magnetic mineral holding the remanence (e.g. $T_c \sim 575 \, ^\circ C$ for magnetite) are ideal. As a sample is heated past the Curie temperature, any previous net magnetisation exhibited will be disrupted. As the sample begins to cool below the T_c, these minerals will become magnetised proportional to the prevailing field at the time, thus archiving a thermomagnetic remanence (TRM) of the direction and intensity.

With an archaeomagnetic dating reference curve, the direction and intensity of the TRM in the archaeological material being investigated can be compared to known changes in the geomagnetic field to estimate a date with an error range of a few hundred years (McIntosh and Catanzariti 2006). If such a curve does not exist, then the data recovered can still be useful for establishing a relative age for different archaeological material and features by looking at variability in the field direction between different hearths on an open landscape, features in different excavation trenches with unknown stratigraphic correlation, or different bricks in a building to understand reuse history (Herries et al. 2007; Herries and Kovacheva 2007).

If samples are not heated through the Curie point of the relevant mineral in the sample, then a partial thermomagnetic remanence (pTRM) is formed. This does not completely overprint the original remanence in the sample, and thus can be used to understand the different heating events that a sample has experienced. Examples of this include the heating of silcrete to make flaked stone tools, where the original geological remanence is overprinted by a pTRM derived from heating in a campfire (Brown et al. 2009), or the use of a brick in a fireplace within a house, where a pTRM overprints the original TRM formed during brick manufacture. In this case, the thermal use history of the artefact or feature can be reconstructed to understand if more than one heating event has occurred, if there was movement between heating events (i.e. over short distances or between countries) and if material is still in the original location where it was heated. This can inform about site formation processes and deliberate versus accidental heating episodes, which has implications for our understanding of past human behaviour.

The sampling of materials in their original context of heating is also ideal for creating and using an archaeomagnetic dating reference curve. For example, a brick part of a standing fireplace, a kiln, or a furnace in its heating context can provide both field directional (i.e. declination and inclination) and intensity data. In contrast, samples recovered from secondary, non-heating contexts cannot be used to obtain reliable geomagnetic directional data as their original orientation during TRM acquisition is unknown. In this regard, samples from secondary contexts may include bricks derived from a feature or structure that was not heated, or bricks originating from archaeological deposits (e.g. construction or demolition fills). Nevertheless, as this paper demonstrates, archaeomagnetic analysis of bricks from secondary contexts is useful for recovering paleointensity data, and it can also provide meaningful archaeological and historical data.

This paper discusses the results and prospects of an exploratory study into the archaeomagnetic properties of nineteenth century bricks derived from Victorian historical sites. Bricks were selected for study as they frequently occur at historical sites, and, in general, only a few representative samples are retained for analysis and curation during commercial projects. Specifically, the aims are to assess the suitability of historical bricks for use as geomagnetic field recorders in Australia, so that they can be used to create a South East Australian Archaeomagnetic Referenced Curve (SEAARC); and to investigate the potential for extracting archaeological data concerning the manufacture and life history of bricks. This project, which is in its preliminary phase, was born out of collaboration between consulting archaeologists, researchers and Heritage Victoria, and it forms the first archaeomagnetic study applied to the field of historical archaeology in Australia.

Sites and materials

The bricks analysed in this study include imported firebricks from Scotland, and handmade bricks that were made locally (i.e. Victorian) (Table 1). All samples were obtained from two nineteenth century archaeological sites in Victoria, although in secondary contexts to any TRM-forming heating events. TRM-forming heating events can include a TRM acquired during initial manufacture (i.e. firing) of the brick (herein after TRM), or a TRM acquired during any heating events post-manufacture (herein after p_{TRM}).

'Harp of Erin Hotel, Burrumbeet' (H7623-0324)

'Harp of Erin Hotel' is an informal name given to two nearby, yet separate, sets of nineteenth century structural remains located in Burrumbeet, western Victoria (Figure 1A-i and -ii). The two sites, separated by a distance of 100 m, were recorded and excavated by Dr Vincent Clark and Associates P/L in 2011–2012 as part of road duplication works for the Western Highway near Ballarat (Anderson et al. 2013). The two sites, designated the East Site and West Site, were partially exposed and buried at shallow depths in an open paddock. Both sites date to the mid-to late-nineteenth century, with additional evidence for occupation during the early-twentieth century at the East
Table 1. Details of brick samples. FS = 556–560 Flinders Street, Melbourne; HE = 'Harp of Erin Hotel', Melbourne

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Brick type</th>
<th>Manufacturer</th>
<th>Location of manufacture</th>
<th>Date of manufacture</th>
<th>Site</th>
<th>Context and date</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB1</td>
<td>Handmade</td>
<td>Unknown</td>
<td>Victoria, Australia</td>
<td>19th century</td>
<td>HE</td>
<td>Archaeological deposit, 19th century</td>
<td>Anderson et al. 2013</td>
</tr>
<tr>
<td>HB2</td>
<td>Handmade</td>
<td>Unknown</td>
<td>Victoria, Australia</td>
<td>19th century</td>
<td>HE</td>
<td>Structural feature, 19th century</td>
<td>Anderson et al. 2013</td>
</tr>
</tbody>
</table>

Understanding the life history of nineteenth century Australian bricks using archaeomagnetism

Figure 1. (A) Map of southeastern Australia, site locations and photos showing (i) Harp of Erin: East Site, Feature B; (ii) Harp of Erin: East Site, Trench 7, cobbled surface; (iii) 556–560 Flinders Street general site photo; and (iv) 556–560 Flinders Street, handmade brick well. (B) Photos of representative brick samples, showing (i) Harp of Erin handmade brick (HB1 and HB2); (ii) 556–560 Flinders Street, 'John Grieve Bank Park Firebrick Works' firebrick (FBW1 and FBW2); and (iii) 556–560 Flinders Street, 'Garnkirk Warranted' firebrick (FBG) with iron-slag staining
Site. Both sites can be associated with the expansion of European settlement in western Victoria during the Gold Rush. The coins identified during excavations support this interpretation, with dates ranging from 1818–1857 (Anderson et al. 2013).

The West Site formed part of a single structure, possibly the historically known Harp of Erin Hotel based on the remaining structural features and associated artefact assemblage. It can also be inferred that the building was occupied for a short period of time given evidence for its sudden destruction by fire and subsequent abandonment (Anderson et al. 2013). However, the nature of occupation at the East Site, where the handmade bricks in this study originate, is not so clear. This locality comprised isolated stone and brick features that were associated with a single wooden building, or multiple wooden buildings. While a specific function could not be ascertained, there were indications, particularly from the artefact assemblage, that the site comprised a semi-public space—possibly a shop or store, or perhaps even a toll-gate that was known to be present in the area at the time. Artefact chronologies indicate that the East Site was potentially occupied during two separate phases: the first was during the mid-nineteenth century; and the second was probably during the early-twentieth century. No other obvious connection could be established between the two sites.

The handmade bricks used for the magnetic analysis were derived from the East Site (Table 1: Figure 1B-i). HB2 was sampled in situ from the wall of Feature B (Figure 1A-i), which was identified as a cool storage room on the basis of its size, form and elaborate construction (Anderson et al. 2013). This feature included a double-layered wall of stone, brick and mortar, deep foundations, and a complex floor construction which may have been intended to create a sealed area for the storage of foodstuffs. The various phases of construction at the site and associated artefact assemblages suggest that the structure probably dates to the third quarter of the nineteenth century. In addition, isolated evidence in the form of charcoal patches, burnt glass and ceramic fragments suggests that the building suffered fire damage (Anderson et al. 2013:34). This fire is unlikely to have been as severe as the West Site fire. HB1 was derived from shallow subsurface deposits overlaying a cobbled surface area (Trench 7), and its context is therefore unclear (Figure 1A-ii). Nevertheless, an 1857 trade token found amongst the cobbles provides the earlier date for the cobbled surface (Anderson et al. 2013:218). This archaeological evidence informs on the period of site occupation, which post-dates the manufacture of the bricks.

All of the bricks recovered from the East and West sites during excavations were handmade (i.e. sandstock) and reddish-yellow in colour (e.g. HB1 and HB2: 5YR 6/6). None of the bricks have frog marks, maker's marks or impressed thumb prints. On the basis of their attributes—including uneven colour, course inclusions and signs of uneven firing—the bricks can be described as "poor" in quality (Anderson et al. 2013; Stuart 2005:84). While the specific location and date of manufacture are unknown, Anderson et al. (2013:101) suggest that the material used to make the bricks was sourced from local clays, thus it is likely that these bricks were made locally. Given the presence of material dating occupation from at least ca 1857, the timing of the first survey of settlement in Burrumbeet (ca 1855; James 2007; Watson 2003) and the presence of a single handmade brick type, it is likely that HB2 and HB1 were fired originally (and thus _TRM formed) during the mid- to late-nineteenth century. Of course, it cannot be ruled out that the bricks were manufactured elsewhere at an earlier date, then transported to and reused at the site, although this is less likely given the prevalence of regional and even mobile brick makers operating in Victoria during the 1850s, and the cost and lack of infrastructure for transporting heavy materials (Stuart 1987:36–37). In light of this uncertainty, HB1 and HB2 and any associated TRM signals are interpreted conservatively as dating to the nineteenth century for the purposes of the analyses (Table 1).

556–560 Flinders Street, Melbourne (H7822-1847)

556–560 Flinders Street comprises a number of small, inner-city allotments that were occupied by industrial and commercial businesses during the nineteenth century (Figure 1A-iii and -iv). The ~300 m² site was subject to salvage excavations and archaeological monitoring by ArchLink Archaeologists and Heritage Advisors P/L in 2014, as part of redevelopment works on the property (Myers et al. 2015).

From 1842–1864, the site formed part of 'Langlands Iron Foundry', which was Victoria's first iron foundry and engineering firm (Burnell 1934). At its height, the foundry (along with the neighbouring 'Fulton Foundry Company') occupied much of the Melbourne CBD block bound by Flinders Street, Spencer Street, Flinders Lane and King Street. 556–560 Flinders Street encompassed a small area of the former foundry grounds, which was interpreted as yard space given the lack of structural evidence identified on-site (Mallett et al. 2015). Major features of the site during the foundry phase included a handmade brick well (with potentially associated wooden features), and various occupational surfaces including handmade brick paving and compacted pebble flooring. Towards the end of the foundry phase, the site was cleared and backfilled with extensive deposits of iron slag, a foundry waste product. These deposits and underlying occupational surfaces were subsequently cut for the construction of new buildings on the allotments, with the construction of 558/560 Flinders Street (Building 1) and 556 Flinders Street (Building 2) taking place in 1864 and 1876, respectively (Mallett et al. 2015). This construction phase marked the transition between the industrial and commercial use of the site, although Langlands Iron Foundry continued to operate from the wider Flinders Street city block until 1881 (Weickhardt 1983).

Two types of imported firebricks from Scotland were analysed. The first type is stamped 'Garnkirk Warranted' (FBG), and the second is stamped 'John Grieve Bank Park Firebrick Works' (FBW1 and FBW2) (Table 1). All firebricks were found in secondary fill deposits sealed
within the brick well (Figure 1A-iv; Figure 1B-ii and -iii). Stratigraphic and historical evidence demonstrate that the well was in use during the foundry phase of occupation (1842–1864). It was backfilled some time before the 1864 building works, and capped with iron slag. This slag layer was subsequently cut for the placement of foundations for Building 1, and the well was covered by the footprint of this new structure (Mallett et al. 2015). The sealed and capped nature of the deposit limits the potential for post-depositional artefact mixing.

The firebricks themselves were all manufactured in Scotland during the nineteenth century (Table 1), and were later imported to Melbourne for use in the foundry, as inferred from their archaeological context, the presence of iron-slag staining, evidence for iron-slag adherence, and the associated deposits and artefact assemblage (Mallett et al. 2015; Myers et al. 2015). While the specific life histories of the firebricks are unknown, the foundry association of the firebricks—which were specialty bricks imported for use during high-temperature heating processes—are such that FBW1, FBW2 and FBG have the potential to record an original TRM component originating from their manufacture in the northern hemisphere; and/or a \(p_m \) TRM derived from foundry heating processes in the southern hemisphere. This means that any potential southern hemisphere TRM component would have formed between 1842–1864, during the foundry occupation at 556–560 Flinders Street. Thus, an original TRM signal should have been acquired between the earliest known manufacturing date (Figure 1A-iv) and the latest capping age of the 556–560 Flinders Street well deposit in 1864.

Archaeomagnetic analysis

Sample preparation

Each brick was drilled with 22 mm diameter cylinder cores at The Australian Archaeomagnetic Laboratory (TAAL), with special care taken to preserve the integrity of the brick stamps which are visible in Figure1B-ii and -iii. The cores were then cut into ca 25 mm sections, and each ca 10 cc sample was weighed and identified (see sample photo; Figure 4). For this study, a total of 29 samples were analysed, including six samples for HB1 (from two perpendicular cores; HB1-A1, -A2, -A3, -B1b, -B2a, -B2b, -B3), five samples for HB2 (from one core; HB2-1, -2, -3, -4, -5), seven samples for FBW1 (from two parallel cores; FBW1-A1, -A2, -A3, -A4, -B2, -B3, -B4), five samples for FBW2 (from one core; FBW2-2, -2, -3, -4, -5) and six samples for FBG (from one core; FWG-1, -2, -3, -4, -5, -6). The measurement of a transect of samples across a brick facilitates the replication and identification of eventual gradient in the magnetic mineralogy and/or in the temperature at which the brick was fired.

Magnetic properties

Samples from each type of brick (i.e. handmade and refractory) were submitted to stepwise thermal and alternating field demagnetisations at TAAL to identify the magnetic mineralogy and to recover the archaeomagnetic directional record. Thermal demagnetisation was performed in 29–33 steps up to 700°C, and alternating field demagnetisation in 28 steps up to 70 mT. The Excel Workbook ‘Demagnetisation Analysis in Excel’ (DAIE; Sagnotti 2013) was used for data analysis and visualisation. The magnetic susceptibility was measured prior to demagnetisation and after each thermal demagnetisation step, using a Bartington dual frequency sensor MS2B to monitor magnetic mineralogy change upon heating. Finally, hysteresis loops for the handmade brick HB1 and firebrick FBW1 were analysed using a Princeton Measurements Corporation ‘Vibrating Sample Magnetometer’ (VSM) at the Environmental Magnetism Laboratory of the Australian National University. This instrument measures the magnetic remanence acquired by a small powdered sample (ca 0.1 g) into laboratory fields building up to 1 T and decreasing to -1 T at room temperature. The shape of the resulting hysteresis loop informs on the coercivity of the magnetic grains assemblage (Tauxe et al. 1996).

Archaeointensity experiment

Archaeointensity experiments are designed to check the ability of a sample to acquire a TRM, and to recover the palaeo-geomagnetic field intensity value. The aim is to replace the natural remanence of the sample progressively with a laboratory-induced TRM, following a stepwise approach. Then, assuming that the acquired remanence is linear with the magnetic field, the slope of the natural remanence to the laboratory-induced remanence is the archaeointensity. The Thellier-Coe palaeointensity method was used for four pilot samples from the handmade brick HB1 and firebrick FBW1, with in-field and zero-field pTRM checks (Coe 1967; Røisager and Røisager 2001; Thellier and Thellier 1959) to detect magnetomineralogical changes and coarser-magnetic-grains biasing effects. The applied field of 40 \(\mu T \) was generated using a power supply EL301R plugged into the Magnetic Measurement MMTD80A thermal demagnetiser furnace. The procedure included 12 heating steps to 100°C, 200°C, 250°C, 300°C, 350°C, 400°C, 440°C, 480°C, 500°C, 520°C, 540°C and 580°C. The program ThellierTool 4.22 was used for archaeointensity data analysis (Leonhardt et al. 2004).

Results

The five bricks analysed have complex magnetic mineralogies with admixture of low- and high-coercivity minerals, as indicated by thermal demagnetisation curves with several slopes (Figure 2). While the handmade bricks (HB1 and HB2; Table 1) and John Grieve Bank Park refractory bricks (FBW1 and FBW2; Table 1) have variable complex magnetic mineralogies within the brick itself, the Garnkirk refractory brick (FBG; Table 1) is remarkably uniform. Variable mineralogies are indicated...
by the hysteresis loop shapes that range from pot-bellied to wasp-waisted (Figure 3), reflecting variable sets of magnetic coercivity spectra (Tauxe et al. 1996); and by the thermal demagnetisation slopes and alteration (not shown) during heating at variable temperatures (Figure 2) within samples from the same brick.

In general, the samples from inside the bricks have higher initial magnetic susceptibility values (100 to 450$x10^{-5}$ SI) and the magnetic minerals alter during the heating experiment, compared to the samples from the surface of the bricks. In contrast, the samples from the surface of the bricks have lower magnetic susceptibility values (<200$x10^{-5}$ SI) and do not alter upon heating, probably because the outside of the bricks was already exposed to air during heating and weathering over time, whereas the interior of the brick was not. While this is true for the handmade bricks and refractory bricks FBW1 and FBW2, once again the refractory brick FBG is different. In addition to having a remarkably uniform mineralogy, this brick does not alter upon heating and the magnetic susceptibility values are low (ca 25$x10^{-5}$ SI).

Importantly, all of the bricks reveal reproducible archaeomagnetic directional histories, despite their complex mineralogies and different degrees of homogeneity or heterogeneity. This means that all of the magnetic minerals within a given brick consistently recorded the same μTRM and μTRM. Figure 4 shows the orthogonal projections for selected samples of each brick, and it illustrates that the two handmade bricks (HB1 and HB2) have two components uniformly throughout the bricks. It also shows that the firebrick FBG has one single directional component uniformly throughout the brick, and that FBW1 and FBW2 display two directional components on one side of the brick only.

Discussion

'Harp of Erin Hotel' handmade bricks: Manufacturing history and fire event

The thermal and alternating field demagnetisation results (Figure 4) clearly reveal two directional components of magnetisation in the handmade bricks. This result suggests that the bricks were fired to high temperatures (>700°C), and then moved to another location to cool down around 350–480°C to ambient temperature. This temperature range can be calculated by identifying the point at which the different components in the sample switch from one to another (Figure 4). The data suggests that the two bricks were heated to quite different temperatures, with HB1 being moved at a higher temperature of ~480°C, and HB2 being moved at ~350–380°C. This may indicate that the two bricks come from different manufacturing events, or were in different parts of the same kiln or stack, or were moved at different times from the same firing event.

These sequences of events are in agreement with the methods of brick firing used during the nineteenth

![Figure 2. Typical thermal demagnetisation curves for each type of brick (A) handmade—HB; (B) refractory 'John Grieve Bank Park Firebrick Works'—FBW; and (C) refractory 'Garnkirk Warranted'—FBG. The multiple slopes indicate complex magnetic mineralogy. Note that the curve shapes within the same bricks are variable for A and B, and the most uniform for C.](image)

![Figure 3. The variable shape of the hysteresis loops reflects the complex magnetic mineralogy of the brick. The shapes vary from (A) wasp-waisted, indicating a mixture of low- and high-coercivity minerals; to (B) pot-bellied, indicating predominantly low-coercivity minerals](image)
Figure 4. Orthogonal projection (Zijderveld 1967) of selected samples for the two handmade bricks (HB1 and HB2) and the three refractory bricks (FBW1, FBW2 and FBG) discussed in the text. The type of alternating field (AF), thermal (Th) demagnetisation, or archaeointensity experiment (PI) analysis is indicated for each sample. The temperature of transition between two directional components is also indicated, as well as the thermal remanent magnetisation acquired during manufacture (m_{TRM}) and the one acquired during a subsequent heating event (p_mTRM). One sample per brick is shown (the cylinder has a section diameter of 22 mm). Note the change from double component on one side to single component on the other side, and the temperature gradient within the refractory bricks FBW1 and FBW2, indicating that one side of the brick was exposed to higher temperatures.
century. The two firing methods used at the time consisted of burning bricks in the open, or firing bricks in the first permanent kilns (Bell 1998). These first kilns were updraught and downdraught designs, depending on where the heat exited the construction, and they needed to be filled with bricks then fired and emptied before the next run began. This means that kilns were not used continuously, and that heating needed to cease so that fired bricks could be removed and others inserted. The Hoffman kilns technology revolutionised brick making in Victoria in the 1870s (Birmingham et al. 1983; Stuart 1987), as these kilns could be used continuously with the heat source being moved around the bricks. The complex and variable magnetic mineralogy within the handmade bricks (Figure 2) is consistent with a heterogeneous clay mixture and/or uneven firing temperatures, which further supports the argument for manual manufacture and use of pre-Hoffman brick-firing methods. Overall, the archaeomagnetic data of the handmade bricks is consistent with the firing method used for kilns prior to the 1870s, and it provides independent support for the site chronology.

It is possible that a secondary heating event such as a wildfire or house fire, rather than being moved during cooling, could have imprinted the archaeomagnetic directional record to explain the low temperature component. While the information available for the samples in this study is limited, in the case of a fire event, the low temperature component (μ_p-TRM) would have overprinted the component acquired during fabrication (μ_m-TRM) and could have overridden any other μ_m-TRM acquired before the time of the event. If the low temperature directional components in the handmade bricks were acquired during a fire event, the heat had to be sufficient and maintained long enough to raise the temperature uniformly throughout the bricks up to 350°C and 480°C for HB1 and HB2 bricks, respectively (Figure 4). There is some evidence for a fire at the East Site (Anderson et al. 2013), and therefore an unidentified major fire event cannot be eliminated. However, there are no burning stains on the bricks that may indicate such a secondary firing event. Overall, the archaeomagnetic analysis of the handmade bricks reveals excellent potential for identifying their manufacturing history and for documenting historical fire events.

Iron foundry firebricks: Geographic provenance and usage

The two types of imported refractory bricks from Scotland (FBG and FBW1, FBW 2; Table 1) reveal different stories. While the brick stamped ‘Garnkirk Warranted’ (FBG) displays a single directional component, the bricks stamped ‘John Grieve Bank Park Firebrick Works’ (FBW1, FBW 2) display two components on one side of the brick only (Figure 4). If the two types of bricks were part of the same construction, used in a comparable fashion and exposed to similar temperatures, then it is expected that their archaeomagnetic directional record would be the same. The different directional records may be due to different magnetic grains assemblages, such as coarser grains or lower-coercivity minerals that typically reset their magnetic remanence at lower temperature. However, the thermal demagnetisation, isothermal remanent acquisition and hysteresis results indicate that this is not the case. The magnetic properties of the firebricks reveal complex mineralogies, and, when considered together, the total magnetic assemblage for each brick covers a similar range of coercivities and temperatures (Figure 2; Figure 3). Therefore, if these firebricks were used in the same way, they would have recorded the same archaeomagnetic directional record.

As the firebricks bear stamps from different companies and appear differently to one another (Figure 1B; Figure 4), they may represent refractory bricks of varying quality and function in the foundry. The archaeomagnetic results suggest that the firebrick FBG was exposed to higher temperatures than the other bricks because it has a single directional component, indicating that the reheating event in Australia completely overprinted any prior manufacturing TRM (μ_m-TRM) that occurred in Scotland. In addition, the noisy signal of this brick (i.e. the poor alignment of its data points; Figure 4) could be the result of strongly magnetic metal having been in close proximity.

This phenomenon is not evident in bricks FBW1 and FBW2. In contrast, these firebricks display two components on one side, suggesting that they were positioned further away from the heat source with only one side heated enough to reset the remanence completely. This is also reflected by a temperature gradient within the brick. The direction change occurs at higher temperatures inside the brick than on the side interpreted as having been further away from the heat source (Figure 4). Therefore, the high temperature directional component preserved on one side of the bricks corresponds to a previous firing event that reached a higher temperature, such as the initial fabrication firing in Scotland (μ_m-TRM).

Interestingly, the preliminary archaeointensity experiments support this possibility with significantly lower paleointensity values associated with the μ_m-TRM than the μ_p-TRM. A geomagnetic field intensity value of ca 62 μT was obtained for the low temperature component likely acquired in the Melbourne foundry, and this value is in agreement with the geomagnetic field model ‘gufm1’ which is derived from compilations in mariners’ logbooks (Jackson et al. 2000) (Figure 5). Based on this model, the geomagnetic field was approximately one-third higher in Melbourne than in Scotland in 1850, and a lower archaeointensity estimate of 39 μT was obtained for the higher temperature component, which is consistent with acquisition during firebrick manufacture in Scotland.

Overall, the archaeomagnetic analysis of refractory bricks provides a wealth of information about their life history, including evidence for their fabrication overseas and subsequent use in the foundry in Melbourne during the nineteenth century.

Conclusion

The archaeomagnetic analysis of a series of nineteenth century Victorian bricks reveals insights into the
Understanding the life history of nineteenth century Australian bricks using archaeomagnetism

provenance, manufacture and use of these bricks, the dating of the site where they were identified, as well as related historical events such as an unintentional fire. The archaeointensity experiments provide independent support for the Scottish provenance and subsequent use of these bricks in Melbourne. These preliminary results demonstrate excellent potential for pursuing archaeomagnetic investigations of Victorian bricks to generate data for the South East Australian Archaeomagnetic Referenced Curve (SEAARC).

The secondary context of the bricks (i.e. to their heating) highlights the need to undertake in situ sampling of features to extract full-vector field data (i.e. declination, inclination and intensity), so that this information can be related to the known heating context to generate a more diagnostic picture of use history. In historical archaeology, this may include the sampling of well-dated brick or pottery kilns, fireplaces and various other features associated with high-temperature manufacture.

However, in commercial archaeology, opportunities for in situ sampling are limited given the time constraints that are commonplace for excavation projects—particularly salvage excavations, where deposits and features can be destroyed for development soon after they are excavated and recorded. Thus, it is hoped that one outcome of this paper is informing a broader audit of consultant archaeologists and heritage practitioners about the application of archaeomagnetism to archaeological sites in Victoria, and about the potential to build future collaborations and plan for on-site sampling when developing timelines for excavation projects. Archaeomagnetism is a powerful, multipurpose tool available to archaeologists and historians in Victoria through The Australian Archaeomagnetism Laboratory at La Trobe University.

Acknowledgments

Thanks to Prof. Andrew Roberts and Dr David Heslop for their collaboration and support using the VSM at the Environmental Magnetism Laboratory of the Australian National University. This work was supported by a La Trobe University Research Fellowship to Dr A. Lisé-Pronovost and a La Trobe University Postgraduate Research Scholarship to T. Mallett.

References

Rowney, M. and J.P White 1997 Detecting heat treatment...

